given that teta =8/7 then evaluate (1+sinteta)*(1-sinteta) /cos teta
Answers
Answered by
1
Question:- Given tanФ = 8/7 then evaluate (1+sinФ)(1-sinФ)/cosФ
Answer: 7/√113
Step-by-step explanation:
Given,
tanФ = 8/7
Squaring both sides,
tan²Ф = 64/49
Adding +1 both sides,
1 + tan²Ф = 64/49 + 1
1 + tan²Ф = (64 + 49)/49
1 + tan²Ф = 113/49
Taking Square root of both sides
√(1 + tan²Ф) = √113/7
1/√(1 + tan²Ф) = 7/√113
But, 1/√(1 + tan²Ф) = cosФ
cosФ = 7/√113
We know that,
(a - b)(a + b) = a² - b²
Similarly,
(1 - sinФ)(1 + sinФ) = 1 - sin²Ф
But,
1 - sin²Ф = cos²Ф
Now,
(1 + sinФ)(1 - sinФ)/cosФ
= cos²Ф/cosФ
= cosФ
= 7/√113
Similar questions