given that
Prove that:
Answers
Solution:
It is given that
Squaring both sides,
Hence, it is proved.
It is given that a \: sinB + B \: sinB = c \:
a \: sinB + B \: sinB = c \: (given)
Squaring both sides,
So, \: {(a \: sinB + b \: sinB) }^{2} = {c}^{2} .
= > {a}^{2} {sin}^{2} B + {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}
= > {a}^{2} (1 - {cos}^{2} B) + {b}^{2} (1 - {sin}^{2} B) + 2ab \: sinB \: cosB = {c}^{2}
= > {a}^{2} - {a}^{2} {cos}^{2} + {b}^{2}\: - {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}
= > {a}^{2} {cos}^{2} B - 2ab \: sinB \: cosB \: + {b}^{2} {sin}^{2} B= {a}^{2} + {b}^{2} - {c}^{2}. \:
= > ({a \: cosB - b \: sinB})^{2} = {a}^{2} + {b}^{2} - {c}^{2}
= > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}
Hence, it is proved.
please mark me as BRAINLIEST