History, asked by rajput181, 11 months ago

given that a \: sinB + B \: sinB = c \:

 = > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}

Answers

Answered by kritanshu
6
Solution:

It is given that a \: sinB + b \: sinB = c \:

a \: sinB + b \: sinB = c \: (given)

Squaring both sides,

So, \: {(a \: sinB + b \: sinB) }^{2} = {c}^{2} .

 = > {a}^{2} {sin}^{2} B + {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} (1 - {cos}^{2} B) + {b}^{2} (1 - {sin}^{2} B) + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} - {a}^{2} {cos}^{2} + {b}^{2}\: - {b}^{2} {sin}^{2} B + 2ab \: sinB \: cosB = {c}^{2}

 = > {a}^{2} {cos}^{2} B - 2ab \: sinB \: cosB \: + {b}^{2} {sin}^{2} B= {a}^{2} + {b}^{2} - {c}^{2}. \:

 = > ({a \: cosB - b \: sinB})^{2} = {a}^{2} + {b}^{2} - {c}^{2}

 = > ({a \: cosB - b \: sinB}) = \sqrt{ {a}^{2} + {b}^{2} - {c}^{2}.}

Hence, it is proved.

Anonymous: nyc sis
nisha1456: Awesome...❤
Answered by Anonymous
2

Hope it helps u^_^

Here in last eq we use the concept of

(a-b)^2=a^2+b^2-2ab

formulae

to prove the eq equal

Attachment is given below⬇️⬇️⬇️

Attachments:

nisha1456: Nice answer sisso...❤
Anonymous: tys
Similar questions