Math, asked by Anonymous, 2 days ago

Given that  \sf{ Sin \; \theta = \dfrac{12}{13} }

Than, find the Value of :-

 \sf{ \dfrac{ 2 \; Cos \; \theta + 3 \; tan \; \theta }{ Sin \; \theta + tan \; \theta \; \; Sin \; \theta }}


Answer Only Mods , Stars and Best Users :)​

Answers

Answered by Equuleus
11

sin = \frac{12}{13}
Therefore, o = 12, h = 13

a^2 + o^2 = h^2

a = 5

We have:

\frac{2cos + 3tan}{sin + tansin}

[tex]\frac{2*\frac{5}{13}+ 3* \frac{12}{5}}{\frac{12}{13} + \frac{12}{5}*\frac{12}{13}}\\\\ \frac{\frac{10}{13}+ \frac{36}{5}}{\frac{12}{13} + \frac{144}{65}}\\\\ \frac{\frac{50}{65} + \frac{468}{65}}{\frac{60}{65} + \frac{144}{65}}\\\\ \frac{518}{204}\\\\ \frac{259}{102}[/tex]

So your answer is 259/102

Hope this helped!

Answered by Anonymous
68

Given :

  •  \sf{ Sin \; \theta = \dfrac{12}{13} }

 \\ \\

To Find :

  •  \sf{ \dfrac{ 2 \; Cos \; \theta + 3 \; tan \; \theta }{ Sin \; \theta + tan \; \theta \; \; Sin \; \theta }}

 \\ \qquad{\rule{200pt}{2pt}}

SolutioN :

According to the Question :

  • We know That :

 \dashrightarrow \; {\underline{\boxed{\pmb{\purple{\sf{ Sin \; \theta = \dfrac{ Perpendicular }{ Hypotenuse } }}}}}}

 \\

  • Hence :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { Sin \; \theta = \dfrac{ Perpendicular }{ Hypotenuse } } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\sf { Sin \; \theta = \dfrac{ 12 }{ 13 } }}}} \; {\orange{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

Deriving the Base :

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { {PR}^{2} = {PQ}^{2} + {QR}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { {13}^{2} = {12}^{2} + {QR}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { 169 = 144 + {QR}^{2} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \sqrt{169 - 144} = QR  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; \sf { \sqrt{25} = QR  } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\sf { QR = 5  }}}} \; {\green{\bigstar}} \\ \\ \\ \end{gathered}

 \\ \\

Deriving the Value of Equation :

  • We Know That :

 \dashrightarrow \; {\underline{\boxed{\pmb{\purple{\sf{ Cos \; \theta = \dfrac{ Base }{ Hypotenuse } }}}}}}

 \\

 \dashrightarrow \; {\underline{\boxed{\pmb{\purple{\sf{ Tan \; \theta = \dfrac{ Perpendicular }{ Base } }}}}}}

 \\

  • Hence :

 \begin{gathered} \dashrightarrow \; \; \sf { \dfrac{ 2 \; Cos \; \theta + 3 \; tan \; \theta }{ Sin \; \theta + tan \; \theta \; \; Sin \; \theta } } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup 2 \times \dfrac{Base}{Hypotenuse} \bigg\rgroup + \bigg\lgroup 3 \times \dfrac{ Perpendicular }{Base} \bigg\rgroup }{ \bigg\lgroup \dfrac{Perpendicular}{Hypotenuse} \bigg\rgroup + \bigg\lgroup \dfrac{Perpendicular}{Base} \bigg\rgroup \times \bigg\lgroup \dfrac{Perpendicular}{Hypotenuse} \bigg\rgroup } \\ \\ \\  \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \dfrac{ \bigg\lgroup 2 \times \dfrac{5}{13} \bigg\rgroup + \bigg\lgroup 3 \times \dfrac{ 12 }{ 5 } \bigg\rgroup }{ \bigg\lgroup \dfrac{12}{13}  \bigg\rgroup + \bigg\lgroup \dfrac{12}{5} \times \dfrac{12}{13} \bigg\rgroup }} \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{10}{13} + \dfrac{ 36 }{ 5 } \bigg\rgroup }{ \bigg\lgroup \dfrac{12}{13} \bigg\rgroup +  \bigg\lgroup \dfrac{12}{5} \times \dfrac{12}{13} \bigg\rgroup } \\ \\ \\ \end{gathered}

  • LCM of 13 and 5 = 65

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{50}{65} + \dfrac{ 468 }{ 65 } \bigg\rgroup }{ \bigg\lgroup \dfrac{12}{13} \bigg\rgroup + \bigg\lgroup \dfrac{12}{5} \times \dfrac{12}{13} \bigg\rgroup } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{518}{65} \bigg\rgroup }{ \bigg\lgroup \dfrac{12}{13} + \dfrac{144}{65} \bigg\rgroup} \\ \\ \\ \end{gathered}

  • LCM of 65 and 13 = 65

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{518}{65} \bigg\rgroup }{ \bigg\lgroup \dfrac{60}{65} + \dfrac{144}{65} \bigg\rgroup } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{518}{65} \bigg\rgroup }{ \bigg\lgroup \dfrac{204}{65} \bigg\rgroup } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  \dfrac{ \bigg\lgroup \dfrac{518}{ \cancel{65} } \bigg\rgroup }{ \bigg\lgroup \dfrac{204}{ \cancel{65} } \bigg\rgroup } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf { \dfrac{518}{204} } \\ \\ \\ \end{gathered}

 \begin{gathered} \dashrightarrow \; \; \sf  { \cancel\dfrac{518}{204} } \\ \\ \\ \end{gathered}

 \begin{gathered} \qquad \; \longrightarrow \; \; {\underline{\boxed{\sf{ \dfrac{259}{102}  }}}} \; {\red{\bigstar}} \\ \\ \\ \end{gathered}

  • Therefore :

 \qquad \; {\underline{\overline{\boxed{\pmb{\sf{ \dfrac{ 2 \; Cos \; \theta + 3 \; tan \; \theta }{ Sin \; \theta + tan \; \theta \; \; Sin \; \theta} = \dfrac{259}{102} }}}}}}

 \\ \qquad{\rule{200pt}{2pt}}

Attachments:
Similar questions