Math, asked by subbababy752, 8 months ago

given that the c. s. a of a right circular as 88cm² and its base diameter as 2cm , find the height of the cylinder​

Answers

Answered by Anonymous
8

ANSWER

\large\underline\bold{GIVEN,}

\sf\dashrightarrow \text{ curved surface area of cylinder= 88cm²}

\sf\dashrightarrow \text{ its base diameter = 2cm}

\sf\therefore radius(r)= \dfrac{diameter}{2}= \dfrac{2}{2} = 1

\sf\dashrightarrow radius(r)= 1cm

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow\text{ height of the cylinder.}

✯.FORMULA IN USE,

\large{\boxed{\bf{ \star\:\: CURVED\:SURFACE\:AREA\:OF\:CYLINDER= 2\pi rh\:\: \star}}}

\large\underline\bold{SOLUTION,}

\sf\dashrightarrow CURVED\:SURFACE\:AREA\:OF\:CYLINDER= 2\pi rh

\sf\dashrightarrow 88= 2 \times \dfrac{22}{7} \times (r) \times (h)

\sf\implies \dfrac{88 \times 7}{2 \times 22}= h

\sf\implies \dfrac{\cancel{88} \times 7}{\cancel{2} \times 22}= h

\sf\implies \dfrac{\cancel{44} \times 7}{\cancel{22}}= h

\sf\implies 2 \times 7=h

\sf\implies h= 14cm

\large{\boxed{\bf{ \star\:\:height=14cm \:\: \star}}}

\large\underline\bold{HEIGHT\:OF\:THE\:CYLINDER\:IS\:14cm.}

______________

Similar questions