Math, asked by Anonymous, 2 days ago

Given that the constant term in the expansion (a {x}^{3} - \frac{1}{x} ) {}^{12} is -1760. Find the value of a.

❖ᴏɴʟʏ ᴘʀᴏᴘᴇʀ ꜱᴏʟᴠᴇᴅ ᴀɴꜱᴡᴇʀ ᴡɪᴛʜ ɢᴏᴏᴅ ᴇxᴘʟᴀɴᴀɪᴏɴ ɴᴇᴇᴅᴇᴅ
❖ ɴᴏ ꜱᴘᴀᴍᴍɪɴɢ
❖ᴏɴʟʏ ꜰᴏʀ ᴍᴏᴅᴇʀᴀᴛᴏʀꜱ, ʙʀᴀɪɴʟʏ ꜱᴛᴀʀꜱ ᴀɴᴅ ᴏᴛʜᴇʀ ʙᴇꜱᴛ ᴜꜱᴇʀꜱ​

Answers

Answered by mathdude500
5

\large\underline{\sf{Solution-}}

Given expansion is

\red{\rm :\longmapsto\: {\bigg[ {ax}^{3}  - \dfrac{1}{x} \bigg]}^{12}  \: }

We know,

General Term in binomial expansion of (x + y)^n is

\rm :\longmapsto\:\boxed{ \tt{ \: T_{r+1} =  \: ^nC_r \:  {x}^{n - r} {y}^{r}  \: }}

So, General Term of

{\rm :\longmapsto\: {\bigg[ {ax}^{3}  - \dfrac{1}{x} \bigg]}^{12}  \:  \: is \: }

\rm :\longmapsto\:T_{r+1} =  \: ^{12}C_r {[ {ax}^{3} ]}^{12 - r}  {\bigg[ - \dfrac{1}{x} \bigg]}^{r}

\rm :\longmapsto\:T_{r+1} =  \: ^{12}C_r {a}^{12 - r} {x}^{36 - 3r} \times \dfrac{ {(1)}^{r} }{ {x}^{r} }

\rm :\longmapsto\:T_{r+1} =  \: {( - 1)}^{r}   \: ^{12}C_r {a}^{12 - r} {x}^{36 - 3r - r}

\rm :\longmapsto\:T_{r+1} =  \: {( - 1)}^{r}   \: ^{12}C_r {a}^{12 - r} {x}^{36 - 4r}

Since, it is given that, Constant term is - 1760.

So, Let we first find the Constant term, i.e. term independent of x.

So, to find the term independent of x, Substitute

\red{\rm :\longmapsto\:36 - 4r = 0}

\red{\rm :\longmapsto\:- 4r =  - 36}

\red{\rm :\longmapsto\:\boxed{ \tt{ \: r = 9 \: }}}

So, term independent of x is

\rm :\longmapsto\:T_{9+1} =  \: {( - 1)}^{9}   \: ^{12}C_9 {a}^{12 - 9} {x}^{0}

\rm :\longmapsto\:T_{10} =  \: -    \: ^{12}C_9 {a}^{3}

So,

\rm :\longmapsto\: \: -    \: ^{12}C_9 {a}^{3} \:   =  \:  -  \: 1760

\rm :\longmapsto\: \: \dfrac{12 \times 11 \times 10}{3 \times 2 \times 1}  \times  {a}^{3} \:   =  \: \: 1760

\rm :\longmapsto\: \: 220  \times  {a}^{3} \:   =  \: \: 1760

\rm :\longmapsto\: \:   {a}^{3} \:   =  \: \: 8

\rm :\longmapsto\: \:   {a}^{3} \:   =  \: \:  {2}^{3}

\rm \implies\:\boxed{ \tt{ \: a \:  =  \: 2 \: }}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information :-

\rm :\longmapsto\:\boxed{ \tt{ \: ^nC_r \:  =  \: ^nC_{r - 1} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: ^nC_0 \:  =  \: ^nC_{n} \:  =  \: 1}}

\rm :\longmapsto\:\boxed{ \tt{ \: ^nC_1 \:  =  \: ^nC_{n - 1} \:  =  \: n}}

\rm :\longmapsto\:\boxed{ \tt{ \: \dfrac{^nC_r}{^nC_{r - 1}}  =  \frac{n - r + 1}{r} \: }}

\rm :\longmapsto\:\boxed{ \tt{ \: ^nC_r \:  +  \: ^nC_{r - 1} \:  =  \: ^{n + 1}C_r \: }}

Answered by swanhayden7
0

Answer:

The value of a = 2

Step-by-step explanation:

Hope it helps you

Similar questions