Math, asked by shidasia04, 3 months ago

Given that the gradient of the curve y = mx^{2} - \frac{1}{nx} at point N (-1,9) is -9. Find the value of m and n

Attachments:

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

y = m {x}^{2}  -  \frac{1}{nx}  \\

 \implies \:  \frac{dy}{dx}  = 2mx +  \frac{1}{n {x}^{2} }  \\

 \implies \:  \frac{dy}{dx}_{(x =  - 1 \: y = 9)}  =  - 2m +  \frac{1}{n}  \\

Also,

9 = m +  \frac{1}{n}  \\

 \implies \frac{1}{n}  = 9 - m \\

\implies - 9 =  - 2m + 9 - m

\implies3m = 18\implies \: m = 6

 \therefore \: n =  \frac{1}{3}  \\

Answered by shadowsabers03
11

The curve is given by,

\longrightarrow y=mx^2-\dfrac{1}{nx}

At (x,\ y)=(-1,\ 9),

\longrightarrow 9=m(-1)^2-\dfrac{1}{n(-1)}

\longrightarrow 9=m+\dfrac{1}{n}

\longrightarrow m=9-\dfrac{1}{n}\quad\quad\dots(1)

The slope of tangent to the curve is given by,

\longrightarrow s=\dfrac{dy}{dx}

\longrightarrow s=\dfrac{d}{dx}\left(mx^2-\dfrac{1}{nx}\right)

\longrightarrow s=2mx+\dfrac{1}{nx^2}

At (x,\ y)=(-1,\ 9),

\longrightarrow s=-9

\longrightarrow2m(-1)+\dfrac{1}{n(-1)^2}=-9

\longrightarrow-2m+\dfrac{1}{n}=-9

Putting value of m from (1),

\longrightarrow-2\left(9-\dfrac{1}{n}\right)+\dfrac{1}{n}=-9

\longrightarrow-18+\dfrac{3}{n}=-9

\longrightarrow n=\dfrac{1}{3}

Putting value of n in (1),

\longrightarrow m=9-\dfrac{1}{\left(\dfrac{1}{3}\right)}

\longrightarrow m=6

Hence,

\longrightarrow\underline{\underline{\left(m,\ n\right)=\left(6,\ \dfrac{1}{3}\right)}}

Similar questions