Math, asked by mufiahmotors, 1 month ago

Given that the roots of x^3 + 3x + 2 = 0 are a, B and y
find a^2 + B^2 + y^2 without calculating the values of the root.

Answers

Answered by nithya12333
1

Answer:

 {x}^{2}  + 3x + 2 = 0 \\  {x}^{2}  + (2  + 1)x + 2  \\  {x}^{2}  + 2x + x + 2 \\ x(x + 2) + 1(x + 2) \\ (x + 2)(x  + 1)

x = - 2 \: and \: y =  - 1

Hope this may help you

Answered by brainlyanswerer83
3

Hey user ,

Given Question:-

⇒ Given that the roots of x³ + 3x  + 2 = 0

  are α, β, and y. find α² + β² + y² without calculating

  the values of the root.

To find:-

⇒ find α² + β² + y² without calculating the values

   of the root.

Solution:-

→ ( x - α ) ( x - β ) ( x - y ) = 0

→ x³ - ( α + β + y ) x² + ( αβ + βy + yα ) x - αβy = 0

→ α + β + y = 0

→ αβ + βy + yα = 3

→ αβy = -2

We want ,

α² + β² + y²           [ α + β + y = 0]

→                               [ αβ + βy + yα = 3]

→                               [ αβy = -2]

→ ( α + β + y)² = ( α + β + y ) ( α + β + y)      

→                     = α² + β² + y² + 2(αβ + βy + yα)

→ α² + β² + y² = ( α + β + y)² - 2( αβ + βy + yα )

→                     = 0 - 2 ( 3 )

→                     = -6

--------------------------------------------------------------------------------

Similar questions