Given that the zeros of the cubic polynomial x³-6x+3x+10 are of the form a ,a+b and a+2b for some real number a and b ,find the values of a and b, as well as the zeros of the polynomial
Answers
Answer:
a = - 1 , b = 3 or a = 5, b = - 3 and - 1, 2, and 5 are the zeroes
Step-by-step explanation:
Given :
a, ( a + b ) , and ( a + 2b ) are the zeroes of the cubic polynomial x³ - 6x² + 3x + 10
Comparing x³ - 6x² + 3x + 10 with a'x³ + b'x² + c+ d we get
- a' = 1
- b' = - 6
- c = 3
- d = 10
Sum of zeroes = - b'/a
⇒ a + ( a + b ) + ( a + 2b ) = - (- 6 ) /1
⇒ 3a + 3b = 6
⇒ 3( a + b ) = 6
⇒ a + b = 6/3
⇒ a + b = 2 → ( 1 )
Product of zeroes = - d / a'
⇒ a( a + b )( a + 2b ) = - 10 / 1
It can be written as
⇒ a( a + b )( 2a + 2b - a ) = - 10
⇒ a( a + b ){ 2( a + b ) - a } = - 10
From Eq( 1 )
⇒ a( 2 ){ 2( 2 ) - a } = - 10
⇒ 2a( 4 - a ) = - 10
⇒ 8a - 2a² = - 10
⇒ 2a² - 8a - 10 = 0
Dividing on both sides by 2
⇒ a² - 4a - 5 = 0
Splitting the middle term
⇒ a² - 5a + a - 5 = 0
⇒ a( a - 5 ) + 1( a - 5 ) = 0
⇒ ( a + 1 )( a - 5 ) = 0
⇒ a + 1 = 0 OR a - 5 = 0
⇒ a = - 1 OR a = 5
Substituting the values of a in ( 1 )
Case 1 : When a = - 1
⇒ - 1 + b = 2
⇒ b = 2 + 1
⇒ b = 3
Case 2 : When a = 5
⇒ 5 + b = 2
⇒ b = 2 - 5
⇒ b = - 3
Now, let's find the zeroes
Case 1 : When a = - 1 and b = 3
- a = - 1
- a + b = - 1 + 3 = 2
- a + 2b = - 1 + 2( 3 ) = - 1 + 6 = 5
Case 2 : When a = 5 and b = - 3
- a = 5
- a + b = 5 - 3 = 2
- a + 2b = 5 + 2( - 3 ) = 5 - 6 = - 1
Therefore the values of a and b are - 1 and 3 or 5 and - 3 respectively and the zeroes of the polynomial are - 1, 2, and 5.
Aɴꜱᴡᴇʀ
☞ A = 5 or (-1)
☞ B = (-3) or 3
_________________
Gɪᴠᴇɴ
☆ Zeros of the polynomial x³ - 6x +3x +10 are of the form
◕ a
◕ a+b
◕ a+2b
_________________
Tᴏ ꜰɪɴᴅ
✭ Value of a and b?
✭ Zeros of the polynomial?
_________________
Sᴛᴇᴘꜱ
p(x) = x³ - 6x + 3x +10
❍ Given that a , a+b and a+2b are the zeros of p(x)
Then,
➤ a+(a+b)+(a+2b) =
➤ 3a + 3b = 6
➤ a + b = 3 ..... (i)
Sum of product of zeros at a time =
➼ a(a+b) + (a+b)(a+b) + a(a+2b) =
➼ a(a+b) + (a+b)(a+b) + b+a(a+b) + b = 3
➼ 2a + 2(2+b) + a(2+b) = 3 [using equation (i)]
➼ 2a + (2+2-a) + a(2+2-a) = 3 [using equation (i)]
➼ 2a + 8 - 2a + 4a - a² = 3
➼ - a² + 8 = 3 - 4a
➼ a² - 4a - 5 = 0
❍ Using factorisation method,
➳ a² - 5a + a - 5 = 0
➳ a(a-5) + 1(a-5) =0
➳ (a-5)(a+1) = 0
Equating each with 0,
✪ a - 5 = 0
✪ a = 5
_________
✪ a + 1= 0
✪ a = (-1)
_________
So of the a = (-1) ,then b = 3
And when a = 5 , then b = (-3)
Now lets substitute them and find the Zeros of the polynomial,
❍ When a = 5 and b = (-3)
➜ a , (a+b) and (a+2b) = 5 , (5-3) , (5+2(-3))
➜ 5 , 2 and -1
❍ When a = (-1) and b = 3
➜ a , (a+b) ,(a+2b) = (-1) , (-1+3) ,(-1+2(3))
➜ (-1) ,2 and 5