Science, asked by anjani98, 1 year ago

Given that
Vector A = i-cap+ 2j-cap
Vector B = -j-cap + 2k-cap than find
1. |Vector A + Vector B|
2. |Vector A - Vector B|​

Answers

Answered by Murugan2078
8

vector A+vector B= i-cap + 1j-cap + 2k- cap

vector A- vector B = i-cap +3j-cap -2k-cap

mark as brainliest

Answered by BrainIyMSDhoni
51

Answer:

 \huge \boxed{1. |\vec{A} +  \vec{B}| =  \sqrt{6} }

 \huge \boxed{2. |\vec{A} -  \vec{B}| =   \sqrt{14}  }

Explanation:

Given

 \vec{A} =  \hat{i} +  2\hat{j} \\  \vec{B} = -\hat{ j} +  2\hat{k}

To find

1.| \vec{A} +  \vec{B}| \\ 2.| \vec{A}  -   \vec{B}|

Solutions;

 \bold{1.| \vec{A} +  \vec{B}| } \\ | \vec{A} +  \vec{B}| = ( \hat{i} +  2\hat{j}) + ( -  \hat{j} +  2\hat{k}) \\ |\vec{A} +  \vec{B}| =  \hat{i} +  2\hat{j} -  \hat{j} +  2\hat{k}) \\ | \vec{A} +  \vec{B}| =  \hat{i} +  \hat{j} +  2\hat{k} \\  | \vec{A} +  \vec{B}| =  \sqrt{ {1}^{2} +  {1}^{2} +  {2}^{2}   } \\ | \vec{A} +  \vec{B}| =  \sqrt{1 + 4 + 1} \\  \huge \boxed{| \vec{A} +  \vec{B}| =  \sqrt{6} }

 \bold{2.| \vec{A}  -   \vec{B}| } \\|\vec{A}  -   \vec{B}| = ( \hat{i} +  2\hat{j} ) - ( -  \hat{j} +  2\hat{k}) \\  |\vec{A}  -   \vec{B}| =  \hat{i} +  2\hat{j} +  \hat{j} - 2\hat{k} \\ |\vec{A}  -   \vec{B}| =  \hat{i} +  3\hat{j} - 2 \hat{k} \\ |\vec{A}  -   \vec{B}| =  \sqrt{ {1}^{2} +  {3}^{2} +  {2}^{2}   }  \\ |\vec{A}  -   \vec{B}| =  \sqrt{1 + 9 + 4}  \\   \huge \boxed{|\vec{A}  -   \vec{B}| =  \sqrt{14} }

Similar questions