Math, asked by dalgahenok, 20 days ago

given that w=1+2i , z=(w-25(1-2i))/w^2.find value of z, where z is complex number.

Answers

Answered by senboni123456
2

Step-by-step explanation:

We have,

 \mathscr{z =   \dfrac{ \omega - 25(1 - 2i)}{ {\omega}^{2} } }

 \mathscr{ \implies \: z =   \dfrac{ \omega - 25  +  50i}{ {\omega}^{2} } }

 \mathscr{ \implies \: z =   \dfrac{1 +  2i- 25  +  50i}{  \left(1 + 2i \right)^{2} } }

 \mathscr{ \implies \: z =   \dfrac{ - 24  +  52i}{  1 + 4 {i}^{2}  + 4i } }

 \mathscr{ \implies \: z =   \dfrac{ - 24  +  52i}{  1  - 4  + 4i } }

 \mathscr{ \implies \: z =   \dfrac{ - 24  +  52i}{    -3  + 4i } }

 \mathscr{ \implies \: z =   \dfrac{  24   -   52i}{     3   -  4i } }

 \mathscr{ \implies \: z =   \dfrac{   \left(24   -   52i \right)\left( 3    +   4i \right)}{       \left( 3   -  4i \right)\left( 3    +  4i \right) } }

 \mathscr{ \implies \: z =   \dfrac{ 72 - 156i + 96i - 208 {i}^{2}   }{       \left( 3    \right)^{2} +  \left(  4 \right)^{2}  } }

 \mathscr{ \implies \: z =   \dfrac{ 72 - 156i + 96i  + 208 }{       9 +  16  } }

 \mathscr{ \implies \: z =   \dfrac{280 - 60i   }{     25  } }

 \mathscr{ \implies \: z =   \dfrac{280   }{     25  } -  \dfrac{60}{25}i  }

 \mathscr{ \implies \: z =   \dfrac{56  }{    5  } -  \dfrac{12}{5}i  }

Similar questions