Math, asked by ducklings345, 8 months ago

Given that (x-2)2 is a factor of x3 -x2 -8x +12 . Find the other factors.

Answers

Answered by devrajsharma299
4

1.1    Find roots (zeroes) of :       F(x) = x3-13x-12

Polynomial Roots Calculator is a set of methods aimed at finding values of  x  for which   F(x)=0  

Rational Roots Test is one of the above mentioned tools. It would only find Rational Roots that is numbers  x  which can be expressed as the quotient of two integers

The Rational Root Theorem states that if a polynomial zeroes for a rational number  P/Q   then  P  is a factor of the Trailing Constant and  Q  is a factor of the Leading Coefficient

In this case, the Leading Coefficient is  1  and the Trailing Constant is  -12.

The factor(s) are:

of the Leading Coefficient :  1

of the Trailing Constant :  1 ,2 ,3 ,4 ,6 ,12

Let us test ....

  P    Q    P/Q    F(P/Q)     Divisor

     -1       1        -1.00        0.00      x+1  

     -2       1        -2.00        6.00      

     -3       1        -3.00        0.00      x+3  

     -4       1        -4.00        -24.00      

     -6       1        -6.00        -150.00      

     -12       1       -12.00       -1584.00      

     1       1        1.00        -24.00      

     2       1        2.00        -30.00      

     3       1        3.00        -24.00      

     4       1        4.00        0.00      x-4  

     6       1        6.00        126.00      

     12       1        12.00        1560.00      

The Factor Theorem states that if P/Q is root of a polynomial then this polynomial can be divided by q*x-p Note that q and p originate from P/Q reduced to its lowest terms

In our case this means that

  x3-13x-12  

can be divided by 3 different polynomials,including by  x-4  

Polynomial Long Division :

1.2    Polynomial Long Division

Dividing :  x3-13x-12  

                             ("Dividend")

By         :    x-4    ("Divisor")

dividend     x3      -  13x  -  12  

- divisor  * x2     x3  -  4x2          

remainder         4x2  -  13x  -  12  

- divisor  * 4x1         4x2  -  16x      

remainder             3x  -  12  

- divisor  * 3x0             3x  -  12  

remainder                0

Quotient :  x2+4x+3  Remainder:  0  

Trying to factor by splitting the middle term

1.3     Factoring  x2+4x+3  

The first term is,  x2  its coefficient is  1 .

The middle term is,  +4x  its coefficient is  4 .

The last term, "the constant", is  +3  

Step-1 : Multiply the coefficient of the first term by the constant   1 • 3 = 3  

Step-2 : Find two factors of  3  whose sum equals the coefficient of the middle term, which is   4 .

     -3    +    -1    =    -4  

     -1    +    -3    =    -4  

     1    +    3    =    4    That's it

Step-3 : Rewrite the polynomial splitting the middle term using the two factors found in step 2 above,  1  and  3  

                    x2 + 1x + 3x + 3

Step-4 : Add up the first 2 terms, pulling out like factors :

                   x • (x+1)

             Add up the last 2 terms, pulling out common factors :

                   3 • (x+1)

Step-5 : Add up the four terms of step 4 :

                   (x+3)  •  (x+1)

            Which is the desired factorization

Final result :

 (x + 3) • (x + 1) • (x - 4)

Answered by amiratyagi
1

Step-by-step explanation:

Answer:

Here one root is x = 1 so (x - 1) is a factor. i.e

{x}^{3} - {x}^{2} - 3 {x}^{2} + 3x + 2x - 2 =x

3

−x

2

−3x

2

+3x+2x−2=

{x}^{2} (x - 1) - 3x(x - 1) + 2(x - 1) =x

2

(x−1)−3x(x−1)+2(x−1)=

(x - 1)( {x}^{2} - 3x + 2) =(x−1)(x

2

−3x+2)=

(x - 1)( {x}^{2} - 2x - x + 2) =(x−1)(x

2

−2x−x+2)=

(x - 1)(x(x - 2) - 1(x - 2)) =(x−1)(x(x−2)−1(x−2))=

(x - 1)(x - 2)(x - 1) = (x - 1) {}^{2} (x - 2)(x−1)(x−2)(x−1)=(x−1)

2

(x−2)

Similar questions