Math, asked by bordoloijawaharlal, 9 months ago

Given that, x'2+2x-3 is a factor of f(x)=x'4+6x'3+2ax'2+bx-3a. Find the values of a and b.

Answers

Answered by Anonymous
59

\huge\sf\pink{HEY\:USER}

\huge\sf\pink{\boxed{ANSWER}}

GIVEN,

\text{x^2+2x+3 is a factor of f(x)=x^4+6x^3+2ax^2+bx-3a}

First Factorise the divided.

 x^2+3x-x-3

 x(x+3) -1(x+3)

(x-1) (x+3)

Now,

x+1=0

x=-1

\text{Put the value of x in f(x)}

\implies{ (1)^4+6(1)^3+2a(1)^2+b(1)-3a}

\implies{1+6+2a+b-3a}

\implies{7-a+b=0}..........1

Now,

x+2=0

x=-2

\implies{ (-3)^4+6(-3)^3+2a(-3)^2+b(-3)-3a}

\implies{81-162+18a-3b-3a}

\implies{ 15a-3b-81}...........2

Now,

\text{Multiplying eq 1 with 3}

We have ,

3b-3a+21

add this eqn1 in eqn2

12a-60=0

12a=60

a=5

put value of a in eqn1...we have

7-5+b=0

b=-2

Thank You!

Similar questions