GIVEN THAT (X + 2) AND (X + 3) ARE THE FACTORS OF 2X^3 + AX^2 + 7X - B. DETERMINE THE VALUES OF A AND B?
(ANS - 9 AND 6) IS IT CORRECT PLEASE HELP ME!
Answers
EXPLANATION.
⇒ (x + 2) and (x + 3) are the factors.
⇒ 2x³ + ax² + 7x - b.
As we know that,
⇒ (x + 2) is a factors of equation.
⇒ x + 2 = 0.
⇒ x = - 2.
Put the value of x = - 2 in the equation, we get.
⇒ 2(-2)³ + a(-2)² + 7(-2) - b = 0.
⇒ - 16 + 4a - 14 - b = 0.
⇒ 4a - b - 30 = 0.
⇒ 4a - 30 = b. - - - - - (1).
⇒ (x + 3) is a factors of the equation.
⇒ x + 3 = 0.
⇒ x = - 3.
Put the value of x = - 3 in the equation, we get.
⇒ 2(-3)³ + a(-3)² + 7(-3) - b = 0.
⇒ - 54 + 9a - 21 - b = 0.
⇒ 9a - b - 75 = 0.
⇒ 9a - 75 = b. - - - - - (2).
From equation (1) and (2), we get.
We can write equation as,
⇒ 4a - 30 = 9a - 75.
⇒ - 30 + 75 = 9a - 4a.
⇒ 45 = 5a.
⇒ a = 9.
Put the values of a = 9 in the equation, we get.
⇒ 4a - 30 = b.
⇒ b = 4(9) - 30.
⇒ b = 36 - 30.
⇒ b = 6.
Values of a = 9 and b = 6.
Answer:
Yes, it is correct.
Step-by-step explanation:
Given, the polynomial
and (x+2) and (x+3) are factors of that polynomial.
Let,
Put the value of A in eqn.(1)