GIVEN THAT (X + 2) AND (X + 3) ARE THE FACTORS OF 2X^3 + AX^2 + 7X - B. DETERMINE THE VALUES OF A AND B?
Answers
Explanation :
Given :-
- (x + 2) and (x + 3) are the factors of 2x³ + ax² + 7x - b.
To find :-
- Values of a and b.
Solution :-
Let f(x) = 2x³ + ax² + 7x - b.
Since (x + 2) is a factor of f(x), we must have f(-2) = 0.
Again, since (x + 3) is a factor of f(x), we must have f(-3) = 0.
Now, f(-2) = 0
⇒ [2 × (-2)³ + a × (2)² + 7 × (-2) - b] = 0
⇒ [2 × (-8) + a × 4 + (-14) - b] = 0
⇒ [-16 + 4a - 14 - b] = 0
⇒ [-30 + 4a - b] = 0
⇒ 4a - b = 30 - (1)
Now, f(-3) = 0
⇒ [2 × (-3)³ + a × (-3)² + 7(-3) - b = 0
⇒ [2 × (-27) + a × (9) + (-21) - b = 0
⇒ [-54 + 9a - 21 - b] = 0
⇒ 9a - b = 75 - (2)
Solving (1) and (2) :
⇒ 4a - b = 30
⇒ 9a - b = 75
___________
- 5a = 45
- a = 9
⇒ 9a - b = 75
⇒ 9(9) - b = 75
- 81 - b = 75
- b = 6
∴ The values of a and b are 9 and 6 respectively.
EXPLANATION.
⇒ (x + 2) and (x + 3) are the factors.
⇒ 2x³ + ax² + 7x - b.
As we know that,
⇒ (x + 2) is a factors of equation.
⇒ x + 2 = 0.
⇒ x = - 2.
Put the value of x = - 2 in the equation, we get.
⇒ 2(-2)³ + a(-2)² + 7(-2) - b = 0.
⇒ - 16 + 4a - 14 - b = 0.
⇒ 4a - b - 30 = 0.
⇒ 4a - 30 = b. - - - - - (1).
⇒ (x + 3) is a factors of the equation.
⇒ x + 3 = 0.
⇒ x = - 3.
Put the value of x = - 3 in the equation, we get.
⇒ 2(-3)³ + a(-3)² + 7(-3) - b = 0.
⇒ - 54 + 9a - 21 - b = 0.
⇒ 9a - b - 75 = 0.
⇒ 9a - 75 = b. - - - - - (2).
From equation (1) and (2), we get.
We can write equation as,
⇒ 4a - 30 = 9a - 75.
⇒ - 30 + 75 = 9a - 4a.
⇒ 45 = 5a.
⇒ a = 9.
Put the values of a = 9 in the equation, we get.
⇒ 4a - 30 = b.
⇒ b = 4(9) - 30.
⇒ b = 36 - 30.
⇒ b = 6.
Values of a = 9 and b = 6.