Math, asked by jayantluhach1982, 2 months ago

given that (x-3) is a factor of x^4-x^3-8x^2+ax+12 show that (x+a) is a factor of x^2-2x+4​

Answers

Answered by kk3871334
0

(x - 3) \\ x - 3 = 0 \\ x = 0 + 3 \\ x = 3 \\  \\  {x}^{4}  -  {x}^{3}  - 8 {x}^{2}  + ax + 12 = 0 \\  {3}^{4 } -  {3}^{3}  - 8 \times   {3}^{2}  + a \times 3  + 12 = 0 \\ 81 - 27 - 72 + 3a + 12 = 0 \\  - 30 + 3a = 0 \\ 3a = 0 + 30 \\ a =  \frac{30}{3} \\  a = 10 \\  \\ {x}^{2}  - 2x + 4  \:  \:  \:  \:  \:  \: \:  \:  \:  (x + a = 0) \\ {( - a)}^{2}  - 2 \times ( - a) + 4 \\  { ( - 10)}^{2}  - 2 \times ( - 10) + 4 \\ 100 + 20 + 4 \\  = 124

Similar questions