Given that x − √5 is the factor of the polynomial x^3 − 3√5x^2 − 5x + 15√5 .find all the zeroes of the polynomial.
pls answer it correctly and quickly. surely i would choose as brainliest
Answers
Step-by-step explanation:
Given -
- x - √5 is the factor of the polynomial p(x) = x³ - 3√5x² - 5x + 15√5
To Find -
- Zeroes of the polynomial
Now,
x-√5)x³-3√5x²-5x+15√5(x²-2√5x-15
x³ - √5x²
(-) (+)
_____________________
-2√5x² - 5x + 15√5
-2√5x² + 10x
(+) (-)
_________________
-15x + 15√5
-15x + 15√5
(+) (-)
__________
X X
Now, Factorising x² - 2√5x - 15, we get :
→ x² - 2√5x - 15
here,
a = 1
b = -2√5
c = -15
By using quadratic formula :-
- x = -b ± √b² - 4ac/2a
→ -(-2√5) ± √(-2√5)² - 4×1×-15/2(1)
→ 2√5 ± √20 + 60/2
→ 2√5 ± √80/2
→ 2√5 ± 4√5/2
Zeroes are -
→ x = 2√5 + 4√5/2
→ 6√5/2
→ 3√5
And
→ x = 2√5 - 4√5/2
→ -2√5/2
→ -√5
Hence,
The zeroes of polynomial p(x) = x³ - 3√5x² - 5x + 15√5 is 3√5, √5, -√5.
Verification :-
- α + β + γ = -b/a
→ 3√5 + √5 - √5 = -(-3√5)/1
→ 3√5 = 3√5
LHS = RHS
And
- αβ + βγ + γα = c/a
→ 3√5×√5 + √5×-√5 + -√5×3√5 = -5/1
→ 15 - 5 - 15 = -5
→ -5 = -5
LHS = RHS
And
- αβγ = -d/a
→ 3√5 × √5 × -√5 = -(15√5)/1
→ -15√5 = -15√5
LHS = RHS
Hence,
Verified..
It shows that our answer is absolutely correct.
Step-by-step explanation:
hope you like it
sorry for bad handwriting