Given that:-
• x Cos α- y Sin α=p
• x Sin α +y Cos α=q
Find the value of x²+y².
Class-10th
Trigonometry
Note→ This question is not for children, don't try to spam.
Answers
★ ANSWER:-
⇒ P²+Q²
★ SOLUTION:-
Given equations:-
• x cos α- y sin α=p
• x sin α + y cos α=q
By squaring these equations and adding both we get:
(x cos α - y sin α)²+(x sin α + y cos α)² =p²+q²
By applying Algebric identities we get:
⇒ (X cos α)²+(y sin α)²-2(x cos α)(y sin α)+(x sin α)²+(y cos α)²+2(x sin α)(y cos α)=p²+q²
⇒ x²Cos²α+y²sin²α-2 xy cos α sin α+x²sin²α+y²cos²α+2xy sin α cos α=p²+q².
Here -2xy sin α cos α and + 2 xy sin α cos α will be cancelled.
⇒ x²(cos²α+sin²α)+y²(sin²α+cos²α)=p²+q²
⇒ x²(1)+ y²(1)=p²+ q²
Because sin²a+cos²a=1 [identity]
⇒ x²+y²=p²+q² So the answer is p²+q².
Required Answer:-
Given:
- x cos α - y sin α = p
- x sin α + y cos α = q
To Find:
- The value of x² + y²
Formula Used:
- sin²α + cos²α = 1
Solution:
Given that,
→ x cos α - y sin α = p — (i)
→ x sin α + y cos α = q — (ii)
Squaring both sides of equation (i), we get,
→ x²cos²α + y²sin² α - 2xy sin α cos α = p² — (iii)
Squaring both sides of equation (ii), we get,
→ x²sin²α + y²cos²α + 2xy sin α cos α = q² — (iv)
Adding (iii) and (iv), we get,
→ x²sin²α + x²cos²α + y²sin²α + y²cos²α = p² + q²
Taking x² and y² as common, we get,
→ x²(sin²α + cos²α) + y²(sin²α + cos²α) = p² + q²
Now, we know that,
→ sin²α + cos²α = 1
→ x² × 1 + y² × 1 = p² + q²
→ x² + y² = p² + q²
★ Therefore, x² + y² = p² + q²
Answer:
- x² + y² = p² + q².