given that x-root 5 is a factor of the cubic polynomial x^3-3root5x^2-3root5, find all the zeroes of the polynomial
******10 points*******
plzzzzzz answer
Answers
Answered by
11
given that x-√5 is a factor of the cubic polynomial x3-3√5x2+13x-3√5
x-√5 ) x3-3√5x2+13x-3√5 ( x2 -2√5x + 3
x3- √5x2 ( substract )
-------------------------------
- 2√5x2+13x
- 2√5x2+10x ( substract )
------------------------------
3x - 3√5
3x - 3√5 ( substract )
------------------------
0
∴ The quotient is x2 -2√5x + 3 = 0
Using roots of quadratic formula
a = 1, b = 2√5, c = 3
x = (-b ± √(b2 - 4ac) ) / 2a
x = (2√5 ± √((2√5)2 - 12) ) / 2
∴ the other zeros are x = √5 + √2 and √5 - √2
Mark as brainliest
x-√5 ) x3-3√5x2+13x-3√5 ( x2 -2√5x + 3
x3- √5x2 ( substract )
-------------------------------
- 2√5x2+13x
- 2√5x2+10x ( substract )
------------------------------
3x - 3√5
3x - 3√5 ( substract )
------------------------
0
∴ The quotient is x2 -2√5x + 3 = 0
Using roots of quadratic formula
a = 1, b = 2√5, c = 3
x = (-b ± √(b2 - 4ac) ) / 2a
x = (2√5 ± √((2√5)2 - 12) ) / 2
∴ the other zeros are x = √5 + √2 and √5 - √2
Mark as brainliest
RehanAhmadXLX:
Thanks fir marking
Similar questions