given that x*(x+1)=1, then find the value of (x+1)^3+1/(x+1)^3
Answers
Answered by
2
Answer:
we have, x+1/x=1
Or,x²+1=x
Or,x² -x+1=0
Or, x² -2.x.(1/2)+1/4=1/4 -1
Or,(x-1/2)²=-3/4
Or,x-1/2=±i√3/2
Or,x=1/2±i√3/2
For x=1/2+i√3/2
x+1=1+1/2+i√3/2
Or,x+1=3/2+i√3/2
Or,(x+1)³ =(1/8)(3+i√3)³
Or, (x+1)³=(1/8)(27+i27√3–27-i3√3)
Or,(x+1)³=i3√3
Or,(x+1)³ +1/(x+1)³ =i3√3+1/i3√3
Or,(x+1)³ +1/(x+1)³ =i26/3√3
When x=1/2-i√3/2
Then, x+1=3/2-i√3/2
Or, (x+1)³=(1/8)(27–i27√3–27+i3√3)
Or,(x+1)³=-i3√3
Or,(x+1)³+1/(x+1)³ =-i3√3+1/-i3√3
Or,(x+1)³+1/(x+1)³ =-i26/3√3
Hence (x+1)³+1/(x+1)³=±i26/3√3
Similar questions