Math, asked by jotsanad, 2 months ago

given that y=e^x /e^x-1 find dy/dx

Answers

Answered by panditprakhyat786
1

Answer:

based on dy/dx e^x=e^x is used

Attachments:
Answered by mathdude500
5

\large\underline{\sf{Solution-}}

➢ Given that

\rm :\longmapsto\:y = \dfrac{ {e}^{x} }{{e}^{x} - 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx} y =\dfrac{d}{dx} \:  \dfrac{ {e}^{x} }{{e}^{x} - 1}

We know that

\underbrace{\boxed{\sf{\dfrac{d}{dx} \frac{u}{v} \:  =  \: \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} }  }}}

So, using this formula, we have

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{({e}^{x} - 1)\dfrac{d}{dx}{e}^{x}  \: -  \: {e}^{x}\dfrac{d}{dx}({e}^{x} - 1)}{ {({e}^{x} - 1)}^{2} }

We know that,

\underbrace{\boxed{\sf{\dfrac{d}{dx}{e}^{x} = {e}^{x}}}} \:  \:  \:  \:  \:  \rm and \:  \:  \:  \: \:  \underbrace{\boxed{\sf{ \dfrac{d}{dx}k = 0}}}

So, using these, we have

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{({e}^{x} - 1){e}^{x}  \: -  \: {e}^{x}({e}^{x} - 0)}{ {({e}^{x} - 1)}^{2} }

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{{e}^{2x} - {e}^{x}  \: -  \: {e}^{2x}}{ {({e}^{x} - 1)}^{2} }

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ - {e}^{x}}{ {({e}^{x} - 1)}^{2} }

Second Method :-

➢ Given that

\rm :\longmapsto\:y = \dfrac{ {e}^{x} }{{e}^{x} - 1}

can be rewritten as

\rm :\longmapsto\:y = \dfrac{ {e}^{x} - 1 + 1 }{{e}^{x} - 1}

\rm :\longmapsto\:y = \dfrac{ {e}^{x} - 1 }{{e}^{x} - 1}  + \dfrac{1}{{e}^{x} - 1}

\rm :\longmapsto\:y = 1 +  {({e}^{x} - 1)}^{ - 1}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx}( 1 +  {({e}^{x} - 1)}^{ - 1} )

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx}1 +  \dfrac{d}{dx}{({e}^{x} - 1)}^{ - 1}

\underbrace{\boxed{\sf{\dfrac{d}{dx}{x}^{n} = {nx}^{n - 1}}}} \:  \:  \:  \:  \:  \rm and \:  \:  \:  \: \:  \underbrace{\boxed{\sf{ \dfrac{d}{dx}k = 0}}}

\rm :\longmapsto\:\dfrac{dy}{dx} = 0 + ( - 1) {({e}^{x} - 1)}^{ - 1 - 1}\dfrac{d}{dx}({e}^{x} - 1)

\rm :\longmapsto\:\dfrac{dy}{dx} = - 1 {({e}^{x} - 1)}^{ -2}{e}^{x}

\bf :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ - {e}^{x}}{ {({e}^{x} - 1)}^{2} }

Similar questions