Given that z=-1-i√3 , find the modulus and
the argument.
Answers
Answered by
7
z = -1 -i√3
Real part of z = -1
Imaginary part of z = -√3
In complex numbers,
argument = tan⁻¹ (imaginary part/real part)
here,
argument of z = tan⁻¹( -√3/-1) = tan⁻¹(√3) = π/3 - π = -2π/3 [As argument lies in 3rd quadrant]
argument of z = -2π/3
IzI (modulus) = √[(real part)² + (imaginary part)²]
IzI = √[(-3)² + (-1)²]
IzI = √(3+1) = 2
IzI = 2
Similar questions
Math,
3 months ago
Environmental Sciences,
3 months ago
Science,
3 months ago
Business Studies,
7 months ago
Hindi,
7 months ago
Science,
11 months ago
Math,
11 months ago
Hindi,
11 months ago