Given thatA is a square matrix of order 3×3 and |A|=9, then find the value of |A.adjA|?
Answers
Step-by-step explanation:
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10 2
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10Now ∣adjA∣=∣A∣ n−1 where n is the order of the square matrix.Here 'n' is 3, therefore, ∣adjA∣=∣A∣ 3−1 =∣A∣ 2 =10 2 =100.
Answer:
Consider the following identity A(adjA)=∣A∣I. Thus comparing it with the above equation gives us ∣A∣=10
Now ∣adjA∣=∣A∣
n−1
where n is the order of the square matrix.
Here 'n' is 3, therefore, ∣adjA∣=∣A∣
3−1
=∣A∣
2
=10
2
=100.
Step-by-step explanation:
pls follow me