Given the difference equation 4y(n-2)-6y(n-1)+8y(n)=x(n) where the input excitation x(n)=(1/4)n u(n) and the initial conditions are y(0)=1 and y(1) =2
Answers
Answered by
3
Answer:
Y (z)
X(z)
=
10 − 2z
−1
a
2 + 2az−1 + z
−2
Y (z)(a
2 + 2az−1 + z
−2
) = X(z)(10 − 2z
−1
)
a
2
y[n] + 2ay[n − 1] + y[n − 2] = 10x[n] − 2x[n − 1]
y[n] = 1
a
2
(10x[n] − 2x[n − 1] − 2ay[n − 1] − y[n − 2])
Answered by
2
Answer:
Y (z)
X(z)=
10 − 2z
−1
a
2 + 2az−1 + z
−2
Y (z)(a
2 + 2az−1 + z
−2
) = X(z)(10 − 2z
−1)
a
2
y[n] + 2ay[n − 1] + y[n − 2] = 10x[n] − 2x[n − 1]
y[n] = 1
a
2
(10x[n] − 2x[n − 1] − 2ay[n − 1] − y[n − 2])
Explanation:
Please thank
Similar questions