Given the following 3D input data, identify the principal component.
1 1 9
2 4 6
3 7 4
4 11 4
5 9 2
(Steps: center the data, calculate the sample covariance matrix, calculate the eigen vectors and eigen values, identify the principal component)
0.9138
-0.1035
0.3926
-0.2617
0.5891
0.7645
-0.4205
-0.6223
0.2342
-0.3105
-0.8014
0.5112
Answers
Answer:
center the data, calculate the sample covariance matrix, calculate the eigen vectors and eigen values, identify the principal component)
0.9138
-0.1035
0.3926
-0.2617
0.5891
0.7645
-0.4205
-0.6223
0.2342
-0.3105
-0.8014
0.5112
Explanation:
Answer:
-0.3105
-0.8014
0.5112
Explanation:
Center the data:
-2.0000 -5.4000 4.0000
-1.0000 -2.4000 1.0000
0 0.6000 -1.0000
1.0000 4.6000 -1.0000
2.0000 2.6000 -3.0000
Find the covariance matrix (((x − µ)
0
(x − µ))/(n − 1)):
2.5000 5.7500 -4.0000
5.7500 15.8000 -9.2500
-4.0000 -9.2500 7.0000
Solve characteristic equation to obtain the eigen values and eigen vectors
Eigen values:
0.1298
1.2415
23.9287
Eigen vectors:
0.9138 -0.2617 -0.3105
-0.1035 0.5891 -0.8014
0.3926 0.7645 0.5112
Select the principal component, i.e., the eigen vector corresponding to the largest eigen vlaue:
-0.3105
-0.8014
0.5112