Given the polynomials:p(x)=x⁴- 3x³+6x²+3x-4:R(x)=2x³+x²-5x+4. Ans=
(iv) P(x) + R(x)
Answers
Answered by
2
Step-by-step explanation:
Given:-
Given the polynomials:
P(x)=x⁴-3x³+6x²+3x-4
R(x)=2x³+x²-5x+4
To find:-
Find P(x) + R(x) ?
Solution:-
Given polynomials are
P(x)=x⁴-3x³+6x²+3x-4
P(x)=x⁴-3x³+6x²+3x-4R(x)=2x³+x²-5x+4
Now the value of P(x) + R(x)
=>(x⁴-3x³+6x²+3x-4)+(2x³+x²-5x+4)
=>x⁴+(-3x³+2x³)+(6x²+x²)+(3x-5x)+(-4+4)
=>x⁴+(-x³)+(7x²)+(-2x)+(0)
=> x⁴-x³+7x²-2x
Answer:-
P(x) + R(x)= x⁴-x³+7x²-2x
Answered by
101
Given the polynomials:
P(x) =
R(x) =
iv.) P(x) + R(x)
Here,
P(x) = x⁴ - 3x³ + 6x² + 3x - 4
R(x) = 2x³ + x² - 5x + 4
P(x) + R(x)
= x⁴ - 3x³ + 6x² + 3x - 4 + 2x³ + x² - 5x + 4
= x⁴ - 3x³ + 2x³ + 6x² + x² + 3x - 5x - 4 + 4
= x⁴ - x³ + 7x² - 2x
Similar questions