Math, asked by dalimideori1976, 4 months ago

Given the polynomials:p(x)=x⁴- 3x³+6x²+3x-4:R(x)=2x³+x²-5x+4. Ans=
(iv) P(x) + R(x)​

Answers

Answered by tennetiraj86
2

Step-by-step explanation:

Given:-

Given the polynomials:

P(x)=x⁴-3x³+6x²+3x-4

R(x)=2x³+x²-5x+4

To find:-

Find P(x) + R(x) ?

Solution:-

Given polynomials are

P(x)=x⁴-3x³+6x²+3x-4

P(x)=x⁴-3x³+6x²+3x-4R(x)=2x³+x²-5x+4

Now the value of P(x) + R(x)

=>(x⁴-3x³+6x²+3x-4)+(2x³+x²-5x+4)

=>x⁴+(-3x³+2x³)+(6x²+)+(3x-5x)+(-4+4)

=>x⁴+(-x³)+(7x²)+(-2x)+(0)

=> x⁴-x³+7x²-2x

Answer:-

P(x) + R(x)= x⁴-x³+7x²-2x

Answered by Anonymous
101

\sf\Large{\underline{\underline{Question:-}}}

Given the polynomials:

P(x) = \sf \: x {}^{4} - \: 3 x{}^{3} + \: 6 x{}^{2} + \: 3x - \: 4

R(x) = \sf \: 2 x{}^{3} + x{}^{2} - 5x + 4

iv.) P(x) + R(x)

\sf\Large{\underline{\underline{Solution:-}}}

\sf\Large{\pink{\underline{Given:-}}}

Here,

P(x) = x⁴ - 3x³ + 6x² + 3x - 4

R(x) = 2x³ + x² - 5x + 4

\sf\Large{\pink{\underline{To find:-}}} P(x) + R(x)

= x⁴ - 3x³ + 6x² + 3x - 4 + 2x³ + x² - 5x + 4

= x⁴ - 3x³ + 2x³ + 6x² + x² + 3x - 5x - 4 + 4

= x⁴ - x³ + 7x² - 2x

\green{Hope \: it \: helps}

Similar questions