Physics, asked by vardhanchowdary2016, 9 months ago

Given the vectors
A = 2i + 3j-k: B = 3-2-2k & C = pi + pj+2pk find the angle between (A-B)&C​

Answers

Answered by iamrabinson
16

Answer: let a -b vector be p vector

Explanation:

Attachments:
Answered by ShreyaNegi02
2

Answer:

The Angle between (A-B) and C is 40°

Explanation:

Given : A = 2i + 3j - k     B= 3i - 2j - 3k      C= pi + pj + 2pk

Step 1 : to  finding vector A - B  

A - B = (2i +3j -k) -(3i - 2j - 3k )  

 A - B =  (-i + j - 4k)

Step 2:  to find dot product of (A-B) and C

 (A-B).C = (-i +j -4k) .(pi + pj + 2pk)      

       = -p + p- 8p  (A-B) .C

       = -8p

Step 3 : now we find magnitude of A-B and C

A-B = \sqrt{(-1)^{2}+1^{2} +(-4)^{2} }        

 = \sqrt{18}

C= \sqrt{p^{2}+p^{2}+(2p)^{2} }      

=\sqrt{6p^{2} }

Step 4: now we can also write

 (A-B).C =(A-B)(C) cos θ

 -8p=\sqrt{18} \sqrt{6p^{2} }cos \theta

 -\frac{8}{6\sqrt{3} } = cos\theta

 cos \theta = 0.77

 \theta = 40°

Similar questions