Given the vertices of the triangle A (1; 1), B (4; 1), C (4; 5). Find the cosine of the angle A of this triangle.
Answers
Answer:
Using law of cosines, we have, a
2
=b
2
+c
2
−2bccosA
From the given points, a
2
=BC
2
=68, b
2
=AC
2
=169, c
2
=AB
2
=25
Substituting these values, we have cosA=
2bc
b
2
+c
2
−a
2
cosA=
2×13×5
169+25−68
=
130
126
=
65
63
Answer:
Cos A = 4
Step-by-step explanation:
a = AB
b = AC
c = AB
FOR Cosine A, we have a law of Cosine And the formula is below,
------------------------------
For a²,
BC² = a² Hence,
BC² =
BC² =
BC² =
BC² =
------------------------------
For b²,
AC² = b² Hence,
AC² =
AC² =
AC² =
AC² =
AC² =
------------------------------
For c²,
AB² = c² Hence,
AB² =
AB² =
AB² =
AB² =
------------------------------
And also,
a² = 16 = BC²
b² = 25 = AC²
c² = 9 = AB²
-----------------
Therefore,
→ a² = 16
→ a = √16
→ a = 4
-----------------
→ b² = 25
→ b = 5
-----------------
→ c² = 9
→ c = 3
-----------------
Now, We have all values of Formula so we need to put it on,
I hope it helps you :)