Given triangle PQR ,PS is perpendicular QR. PS²=QS×RS. Prove that triangle PQR is a right angled triangle..
Answers
Here we have,
Right angled Triangle,
PSQ and PSR
Here we get 2 Equations :-
PQ² = PS² + QS²…………(1)
Also we have,
PR² = PS² + SR²………(2)
Here we have to add (1) and (2) we get
PQ² + PR² = 2PS² + QS² + SR²
According to Information
PS² = QS × RS
PQ² + PR² = 2(QS × SR) + QS² + SR²
PQ² + PR² = (QS + SR)²
Using Identity :-
(a + b)² = a² + b² + 2ab
PQ² + PR² = QR² (QR = QS + SR)
Therefore,
∆PQR is a right angled triangle
Answer:
Here we have,
Right angled Triangle,
PSQ and PSR
Here we get 2 Equations :-
PQ² = PS² + QS²…………(1)
Also we have,
PR² = PS² + SR²………(2)
Here we have to add (1) and (2) we get
PQ² + PR² = 2PS² + QS² + SR²
According to Information
PS² = QS × RS
PQ² + PR² = 2(QS × SR) + QS² + SR²
PQ² + PR² = (QS + SR)²
Using Identity :-
(a + b)² = a² + b² + 2ab
PQ² + PR² = QR² (QR = QS + SR)
Therefore,
∆PQR is a right angled triangle
Step-by-step explanation: