Math, asked by PragyaTbia, 1 year ago

Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. Find
(i) P(A and B)
(ii) P(A and not B)
(iii) P(A or B)
(iv) P(neither A nor B)

Answers

Answered by 1918060065
2

Answer:

step1; Reattribute. ...

Step 3: Refocus. ...

Step 4: Revalu

Step-by-step explanation:

Answered by pintusingh41122
0

Given two independent events A and B such that P(A) = 0.3, P(B) = 0.6. the value of

(i) P(A and B)  = 0.18

(ii) P(A and not B) =0.12

(iii) P(A or B) =0.72

(iv) P(neither A nor B)=0.28

Step-by-step explanation:

Given \textrm{P}(\textrm{A})=0.3, \textrm{P}(\textrm{B})=0.6

A and B are Independent events

i.e \textrm{P}(\textrm{A}\textrm{and}\textrm{B})=\textrm{P}(\textrm{A}). \textrm{P}(\textrm{B})

(I) \textrm{P}(\textrm{A}\textrm{and}\textrm{B})=\textrm{P}(\textrm{A}). \textrm{P}(\textrm{B})=0.3 \times0.6=0.18

(ii) \textrm{P}(\textrm{A}\textrm{and}\textrm {notB})=\textrm{P}(\textrm{A}). \textrm{P}(\textrm{notB})=\textrm{P}(\textrm{A}). (1-\textrm{P}(\textrm{B}))

  =0.3 (1-0.6)

  =0.3 \times0.4

 =0.12

(iii) \textrm{P}(\textrm{A}\textrm {Or}\textrm{B})

    =\textrm{P}(\textrm{A}\bigcup \textrm{B})

=\textrm{P}(\textrm{A})+\textrm{P}(\textrm{B})-\textrm{P}(\textrm{A}\bigcap \textrm{B})

  =0.3+0.6-0.18

  =0.72

(iv) \textrm{P}(\textrm{neither }\textrm{A}\textrm {nor}\textrm {B})=\textrm{P}\overline{(\textrm{A}\bigcup\textrm{B)} }=1-\textrm{P}(\textrm{A}\bigcup \textrm{B})

 =1-0.72

=0.28

Similar questions