Math, asked by sajan6491, 1 day ago

Given two points P(sinθ+2, tanθ-2) and Q(4sin²θ+4sinθcosθ+2acosθ, 3sinθ-2cosθ+a). Find constant "a" and the corresponding value of θ when these two points coincide. (0 ≤ θ < 2π)​

Answers

Answered by mathdude500
7

\large\underline{\sf{Solution-}}

Given that,

  • Coordinates of P is (sinθ + 2, tanθ - 2)

  • Coordinates of Q is (4sin²θ + 4sinθcosθ + 2acosθ, 3sinθ - 2cosθ + a)

As it is given that, Coordinates of P and Q coincides.

So, it means

\rm \: sin\theta +2 =  4sin^{2} \theta +4sin\theta cos\theta +2acos\theta -  - (1)  \\

and

\rm \: tan\theta -2 =  3sin\theta -2cos\theta +a \\

can be rewritten as

\rm \:  \frac{sin\theta }{cos\theta }  -2 =  3sin\theta -2cos\theta +a \\

\rm \:  \frac{sin\theta  - 2cos\theta }{cos\theta } =  3sin\theta -2cos\theta +a \\

\rm \:  sin\theta  - 2cos\theta  =  3sin\theta \: cos\theta  -2cos^{2} \theta +acos\theta -  - (2)  \\

Let assume that  sin\theta = x\:and\:cos\theta=y

So, equation (1) and (2) can be rewritten as

\rm \: x +2 =   {4x}^{2} + 4xy +2ay -  - (3)  \\

and

\rm \:  x  - 2y  =  3xy  -2 {y}^{2}  +ay -  - (4)  \\

On multiply equation (4) by 2, we get

\rm \:  2x  - 4y  =  6xy  -4{y}^{2}  +2ay -  - (5)  \\

On Subtracting equation (5) from (3), we get

\rm \:  x + 2 - 2x +  4y  =   {4x}^{2} + 4xy  - 6xy + 4{y}^{2}  \\

\rm \:   2 - x +  4y  = 4({x}^{2} +  {y}^{2})   - 2xy  \\

\rm \:   2 - x +  4y  = 4   - 2xy  \\

\rm \:   2 - x +  4y  - 4 + 2xy  = 0 \\

\rm \:    - x +  4y  - 2 + 2xy  = 0 \\

\rm \:    - (x + 2)  + 2y(2  +x)  = 0 \\

\rm \:     (x + 2)( - 1 + 2y) = 0 \\

\rm\implies \:x =  - 2 \:  \: or \:  \: y \:  =  \:  \frac{1}{2} \\

\rm\implies \:sin\theta  =  - 2\: \:  \{rejected \} \:  \: or \:  \: cos\theta   =  \:  \frac{1}{2} \\

So,

\rm\implies \:cos\theta  = \dfrac{1}{2}  \\

\rm\implies \:\theta  = \dfrac{\pi}{3}  \:  \: or \:  \: \dfrac{5\pi}{3}  \\

Now, Consider

\boxed{ \rm{ \:\theta  \:  =  \:  \dfrac{\pi}{3} \: }} \\

So,

\rm \: tan\theta -2 =  3sin\theta -2cos\theta +a \\

can be rewritten on substituting the values, we get

\rm \: tan\dfrac{\pi}{3} -2 =  3sin\dfrac{\pi}{3} -2cos\dfrac{\pi}{3} +a \\

\rm \:  \sqrt{3}  -2 =  3 \times  \frac{ \sqrt{3} }{2}  -2 \times  \frac{1}{2}  +a \\

\rm \:  \sqrt{3}  -2 = \frac{ 3\sqrt{3} }{2}  -1  +a \\

\rm \:  \sqrt{3}  -2 - \frac{ 3\sqrt{3} }{2}  + 1 = a \\

\rm \:\bf\implies \:a \:  =  \: - \:  \frac{ \sqrt{3} }{2} - 1 \\

Now, Consider

\boxed{ \rm{ \:\theta  \:  =  \:  \dfrac{5\pi}{3} \: }} \\

So,

\rm \: tan\theta -2 =  3sin\theta -2cos\theta +a \\

can be rewritten as

\rm \: tan\dfrac{5\pi}{3} -2 =  3sin\dfrac{5\pi}{3} -2cos\dfrac{5\pi}{3} +a \\

\rm \:   - \sqrt{3}  -2 =   - 3 \times  \frac{ \sqrt{3} }{2}  -2 \times  \frac{1}{2}  +a \\

\rm \:   - \sqrt{3}  -2 =   -   \frac{3\sqrt{3} }{2}  -1  +a \\

\rm \:   - \sqrt{3}  -2  + \frac{ 3\sqrt{3} }{2}+1 = a \\

\rm \:\bf\implies \:a \:  =  \:  \frac{ \sqrt{3} }{2} - 1 \\

Similar questions