Math, asked by ritu2281998, 4 months ago

given u=yzx , v= zxy, w =xyz then the value of d(u,v,w)/d(x,y,z) is (a) 0 (b) 1 (c) 2 (d) 4​

Answers

Answered by pulakmath007
3

SOLUTION

GIVEN

u = yzx , v = zxy, w = xyz

TO CHOOSE THE CORRECT OPTION

 \displaystyle \sf{ =  \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

(a) 0

(b) 1

(c) 2

(d) 4

EVALUATION

Hence the required Jacobian

 \displaystyle \sf{ =  \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

 = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} & \frac{ \partial u}{ \partial z}\\ \\  \frac{ \partial v}{ \partial x}  & \frac{ \partial v}{ \partial y} & \frac{ \partial v}{ \partial z} \\ \\ \frac{ \partial w}{ \partial x}  & \frac{ \partial w}{ \partial y} & \frac{ \partial w}{ \partial z} \end{vmatrix}

= \displaystyle \begin{vmatrix}  yz  & zx & xy\\ \\ yz  & xz & xy \\ \\ yz  & xz & xy \end{vmatrix}

= 0 ( Each row are identical )

FINAL ANSWER

Hence the correct option is (a) 0

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=u^2-v^2,y=2uv find the jacobian of x, y with respect to u and v

https://brainly.in/question/34361788

2. the jacobian of p,q,r with respect to x,y,z where p=x+y+z ,q=y+z,r=z

https://brainly.in/question/33073346

Answered by genius1947
2

Solution ⤵️

Given ⤵️

u = yzx , v = zxy, w = xyz

To Find ⤵️

Choose the correct option:-

 \displaystyle \sf{ =  \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

(a) 0

(b) 1

(c) 2

(d) 4

Calculation ⤵️

\therefore\sf {the\: required\: Jacobian}

 \displaystyle \sf{ =  \frac{ \partial (u,v,w)}{ \partial (x,y,z)} }

 = \displaystyle \begin{vmatrix}  \frac{ \partial u}{ \partial x}  & \frac{ \partial u}{ \partial y} & \frac{ \partial u}{ \partial z}\\ \\  \frac{ \partial v}{ \partial x}  & \frac{ \partial v}{ \partial y} & \frac{ \partial v}{ \partial z} \\ \\ \frac{ \partial w}{ \partial x}  & \frac{ \partial w}{ \partial y} & \frac{ \partial w}{ \partial z} \end{vmatrix}

= \displaystyle \begin{vmatrix}  yz  & zx & xy\\ \\ yz  & xz & xy \\ \\ yz  & xz & xy \end{vmatrix}

= 0 ( Each row are identical )

 \therefore \small \sf{Your\:Answer:-}

Therefore the correct option is⤵️

option (a) 0.

\small{\textbf{\textsf{{\color{navy}\:{Hope}}\:{\purple{it}}\:{\pink{helps}}\:{\color{pink}{you!!♡}}}}}

Similar questions