given utility function u=where px=12birr,py=4birr and the income of the consumer is M=240 birr
find the utility maximizing combination of x and y
Answers
Answered by
0
Answer:
MUx=0.5
y0.5
x0.5
MU_y=0.5 \frac {x^{0.5}}{y^{0.5}}MU
y
=0.5
y
0.5
x
0.5
{\frac{MU_x}{p_x}}=\frac {MU_y}{p_y}
p
x
MU
x
=
p
y
MU
y
x \times p_x+ y \times p_y=Mx×p
x
+y×p
y
=M
y= 3x
12* x+4*y=240
x=10, y=30
D)
\frac {\partial U}{\partial x \partial y} =\frac {0.25} {(xy)^{0.5}}
∂x∂y
∂U
=
(xy)
0.5
0.25
MRS x.y = \frac {\partial U} {\partial x \partial y} = \frac {0.25}{(10 \times 30)^{0.5}}=0.015MRSx.y=
∂x∂y
∂U
=
(10×30)
0.5
0.25
=0.015
Explanation:
is the right answer mark me brainliest please
Similar questions