Math, asked by dineshpandit9271, 6 hours ago

Given V = 1/3π r² h, find h, when V = 484 c.c. r = 4 cm.​ (algebra)

Answers

Answered by siddhesh0024
0

Answer:

math]f(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-71}}[/math]

It has the following elementary antiderivative:

[math]F(x)=-{\frac {1}{8}}\ln \left((x^{6}+15x^{4}-80x^{3}+27x^{2}-528x+781){\sqrt {x^{4}+10x^{2}-96x-71}}-(x^{8}+20x^{6}-128x^{5}+54x^{4}-1408x^{3}+3124x^{2}+10001)\right) [/math]

but the integral of the similar function (where [math]71[/math] is replaced by [math]72[/math])

[math]g(x)=\displaystyle\frac{x}{\sqrt{x^4+10x^2-96x-72}}[/math]

Answered by litandastu
0

Answer:

 \frac{1}{3} \pi {r}^{2}h = v \\  \frac{1}{3}   \times  \frac{22}{7}  \times  {4}^{2} h = 484 \\ h =  \frac{484 \times 3 \times 7}{22 \times 16}  \\ h = 28.875

Step-by-step explanation:

please mark me brainlieast

Similar questions