Given , vector A = 2i - j + 3k and vector B = 3i - 2j - 2k . Find the unit vector of (a) (A+B) (b) (A-B)
Answers
Answered by
46
Answer
u = (5i -3j +k) / √35
u = (-i +j+5k) / 3√3 .
Explanation
1. To add or subtract two vectors, add or subtract the corresponding components.
2. Formula to find unit vector is u = →v / | →v |
| →v | = √(i² + j² + ²k)
a)
(A+B)
A = 2i - j + 3k
B = 3i - 2j - 2k
A+B = (2+3)i + (-1+-2)j + (3+(-2))k
A+B = D = 5i - 3j + k
|D| = √5² + 3² +1²
|D| =√35
So the unit vector u = (5i -3j +k) / √35
b)
(A-B)
A = 2i - j + 3k
B = 3i - 2j - 2k
A-B = (2-3)i + (-1-(-2))j + (3-(-2))
A-B = C = -i + j + 5k
|C| = √(1²+1²+5²)
|C| = 3√3
So the unit vector u = (-i +j+5k) / 3√3 .
Answered by
2
Given , vector A = 2i - j + 3k and vector B = 3i - 2j - 2k . Find the unit vector of (a) (A+B) (b) (A-B)
Attachments:
Similar questions