Given vectors \mathbf{v} =
⎡⎣−4−38⎤⎦
v=
⎣
⎢
⎡
−4
−3
8
⎦
⎥
⎤
, \mathbf{b_1} =
⎡⎣123⎤⎦
b
1
=
⎣
⎢
⎡
1
2
3
⎦
⎥
⎤
, \mathbf{b_2} =
⎡⎣−210⎤⎦
b
2
=
⎣
⎢
⎡
−2
1
0
⎦
⎥
⎤
and \mathbf{b_3} =
⎡⎣−3−65⎤⎦
b
3
=
⎣
⎢
⎡
−3
−6
5
⎦
⎥
⎤
all written in the standard basis, what is \mathbf{v}v in the basis defined by \mathbf{b_1}b
1
, \mathbf{b_2}b
2
and \mathbf{b_3}b
3
? You are given that \mathbf{b_1}b
1
, \mathbf{b_2}b
2
and \mathbf{b_3}b
3
are all pairwise orthogonal to each other.
Answers
Answered by
0
Answer:
op op op op op ipnugkwjeiw
Similar questions