Math, asked by bidishasahoo, 10 months ago

Given ,
x=1 +root2 +root3 then find (x-1)³ +1/(x-1)³​

Answers

Answered by RvChaudharY50
25

Gɪᴠᴇɴ :-

  • x = (1 + √2 + √3)

Tᴏ Fɪɴᴅ :-

  • (x-1)³ +1/(x-1)³

Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-

  • a³ + b³ = a³ + b³ + 3ab(a + b)

Sᴏʟᴜᴛɪᴏɴ :-

→ x = (1 + √2 + √3)

→ (x - 1) = (√2 + √3) -------- Eqn.(1)

1/(x - 1) = 1/(√2 + √3)

→ 1/(x - 1) = 1/(√2 + √3) * {(√2 - √3) / (√2 - √3)}

→ 1/(x - 1) = (√2 - √3) / {(√2)² - (√3)²}

→ 1/(x - 1) = (√2 - √3)/(2 - 3)

→ 1/(x - 1) = -(√2 - √3) = (√3 - √2) -------- Eqn(2) .

Now,

(x - 1) + 1/(x - 1) = √2 + √3 + √3 - √2

→ (x - 1) + 1/(x - 1) = 2√3

cubing Both sides,

→ [(x - 1) + 1/(x - 1)]³ = (2√3)³

→ (x - 1)³ + 1/(x - 1)³ + 3*(x-1)*1/(x-1)[ (x - 1) + 1/(x - 1) ] = 8*3√3

→ (x - 1)³ + 1/(x - 1)³ + 3 * 1 * 2√3 = 24√3

→ (x - 1)³ + 1/(x - 1)³ + 6√3 = 24√3

→ (x - 1)³ + 1/(x - 1)³ = 24√3 - 6√3

→ (x - 1)³ + 1/(x - 1)³ = 18√3 (Ans.)

Answered by Anonymous
5

★ Given:-

x = (1+√2+√3)

✶ To Find :-

 {x - 1}^{3}  +    \frac{1}{ {x - 1}^{3} }

FoRMula To solVe the MAth :-

{a^3+b^3 =a^3+b^3 +3ab(a+b)

\large\mathtt{SOLution:-}

\implies \: x = (1 +  \sqrt{2}  +  \sqrt{3}

\implies \: (x - 1) = ( \sqrt{2}  +  \sqrt{3} ) -  -  -  -  -  -  - (i)

\implies \:  \frac{1}{x - 1}  =  \frac{1}{ \sqrt{2 }  +  \sqrt{3} }

 \implies \: \frac{1}{x - 1}  =   \sqrt{2}  +   \sqrt{3} \frac{{ \sqrt{2} }^{2} }{ \sqrt{3 {?}^{2} } }

 \implies \: \frac{1}{x - 1}  = -  ( \sqrt{2}  -  \sqrt{3}  =  \sqrt{3 -  \sqrt{2} } ) -  -  -  -  -  -  - (ii)

NoW,

\implies \: (x - 1) +  \frac{1}{x - 1}  \sqrt{2}  +  \sqrt{3}  +  \sqrt{3}  -  \sqrt{2}

\implies \: (x - 1) +  \frac{1}{x - 1}  =  \sqrt[2]{3}

Therefore,

Cubing the both sides,

⇒(x-1) ^3 +(1) (x-1)^3+3*(x-1) * 1/(x-1) [(x-1) +1/(x-1)] =8*3√3

⇒ (x-1)^3 + (1)(x-1)^3.1.2√3 =24√3

⇒(x-1)^3 + (1)(x-1)^3 +6√3 =24√3

⇒ {x-1}^3 + 1/(x-3) ^3=24√3-6√3

⇒ {x-1}^3 + = 18√3

\large\mathtt{BE BRAINLY}

Similar questions