Given ,
x=1 +root2 +root3 then find (x-1)³ +1/(x-1)³
Answers
Gɪᴠᴇɴ :-
- x = (1 + √2 + √3)
Tᴏ Fɪɴᴅ :-
- (x-1)³ +1/(x-1)³
Fᴏʀᴍᴜʟᴀ ᴜsᴇᴅ :-
- a³ + b³ = a³ + b³ + 3ab(a + b)
Sᴏʟᴜᴛɪᴏɴ :-
→ x = (1 + √2 + √3)
→ (x - 1) = (√2 + √3) -------- Eqn.(1)
→ 1/(x - 1) = 1/(√2 + √3)
→ 1/(x - 1) = 1/(√2 + √3) * {(√2 - √3) / (√2 - √3)}
→ 1/(x - 1) = (√2 - √3) / {(√2)² - (√3)²}
→ 1/(x - 1) = (√2 - √3)/(2 - 3)
→ 1/(x - 1) = -(√2 - √3) = (√3 - √2) -------- Eqn(2) .
Now,
→ (x - 1) + 1/(x - 1) = √2 + √3 + √3 - √2
→ (x - 1) + 1/(x - 1) = 2√3
cubing Both sides,
→ [(x - 1) + 1/(x - 1)]³ = (2√3)³
→ (x - 1)³ + 1/(x - 1)³ + 3*(x-1)*1/(x-1)[ (x - 1) + 1/(x - 1) ] = 8*3√3
→ (x - 1)³ + 1/(x - 1)³ + 3 * 1 * 2√3 = 24√3
→ (x - 1)³ + 1/(x - 1)³ + 6√3 = 24√3
→ (x - 1)³ + 1/(x - 1)³ = 24√3 - 6√3
→ (x - 1)³ + 1/(x - 1)³ = 18√3 (Ans.)
★ Given:-
x = (1+√2+√3)
✶ To Find :-
FoRMula To solVe the MAth :-
{a^3+b^3 =a^3+b^3 +3ab(a+b)
NoW,
Therefore,
Cubing the both sides,
⇒(x-1) ^3 +(1) (x-1)^3+3*(x-1) * 1/(x-1) [(x-1) +1/(x-1)] =8*3√3
⇒ (x-1)^3 + (1)(x-1)^3.1.2√3 =24√3
⇒(x-1)^3 + (1)(x-1)^3 +6√3 =24√3
⇒ {x-1}^3 + 1/(x-3) ^3=24√3-6√3
⇒ {x-1}^3 + = 18√3