Given - x^2-3x+1=0 . Find x^5+1/x^5
Answers
Answer:
x² - 3x + 1 = 0
Simplifying the given equation,
➸ (x² - 3x + 1 = 0)/x
➸ x - 3 + 1/x = 0/x
➸ x - 3 + 1/x = 0
➸ x + 1/x = 3
Here,
➸
➸
➸
➸
Also, similarly, x⁴+1/x⁴=47.
Now,
Multiplying x+1/x on both sides.
➸ (x⁴+1/x⁴)(x+1/x)=47(x+1/x)
Simplifying,
➸ x^5 + x³ + 1/x³ + 1/x^5 = 47*3
➸ x^5 + 1/x^5 = 141 - (x³ + 1/x³)
➸ x^5 + 1/x^5 = 141 - [(x+ 1/x)(x²+ 1/x²-1)]
[By identity a³+b³ = (a+b)(a²+b²-ab)]
➸ x^5 + 1/x^5 = 141 - [(3)(7-1)]
➸ x^5 + 1/x^5 = 141 - 18
➸ x^5 + 1/x^5 = 123
Answer:
x² - 3x + 1 = 0
Simplifying the given equation,
➸ (x² - 3x + 1 = 0)/x
➸ x - 3 + 1/x = 0/x
➸ x - 3 + 1/x = 0
➸ x + 1/x = 3
similarly, x⁴+1/x⁴=47.
Now,
Multiplying x+1/x on both sides.
➸ (x⁴+1/x⁴)(x+1/x)=47(x+1/x)
Simplifying,
➸ x^5 + x³ + 1/x³ + 1/x^5 = 47*3
➸ x^5 + 1/x^5 = 141 - (x³ + 1/x³)
➸ x^5 + 1/x^5 = 141 - [(x+ 1/x)(x²+ 1/x²-1)]
[By identity a³+b³ = (a+b)(a²+b²-ab)]
➸ x^5 + 1/x^5 = 141 - [(3)(7-1)]
➸ x^5 + 1/x^5 = 141 - 18
➸ x^5 + 1/x^5 = 123