Math, asked by Isita46, 8 months ago

Given x = √3 -√2 /√3 +√2, y = √3 + √2 / √3 -√2 then find x^2 + y^2 + xy y​

Answers

Answered by Anonymous
46

Given :-

\sf{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}

\sf{y=\dfrac{\sqrt{3}+\sqrt{2}  }{\sqrt{3}-\sqrt{2}  } }

To Find :-

• Value of \sf{x^2+y^2+xy}

Solution :-

After rationalising x and y, we get

\sf{x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}}\\\\\\\sf{\implies x=\dfrac{(\sqrt{3}-\sqrt{2})(\sqrt{3}-\sqrt{2}  )}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2}  )   } }\\\\\\\sf{\implies x=\dfrac{(\sqrt{3}-\sqrt{2}  )^2}{(\sqrt{3} )^2-(\sqrt{2} )^2} }\\\\\\\sf{\implies x=\dfrac{(\sqrt{3} )^2+(\sqrt{2} )^2-2\times \sqrt{3}\times \sqrt{2}  }{3-2} }\\\\\\\sf{\implies x=3+2-2\sqrt{6} }\\\\\boxed{\sf{\implies x=5-2\sqrt{6} }}

____________________☆______________________________

\sf{y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}}\\\\\\\sf{\implies y=\dfrac{(\sqrt{3}+\sqrt{2})(\sqrt{3}+\sqrt{2}  )}{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2}  )   } }\\\\\\\sf{\implies y=\dfrac{(\sqrt{3}+\sqrt{2}  )^2}{(\sqrt{3} )^2-(\sqrt{2} )^2} }\\\\\\\sf{\implies y=\dfrac{(\sqrt{3} )^2+(\sqrt{2} )^2+2\times \sqrt{3}\times \sqrt{2}  }{3-2} }\\\\\\\sf{\implies y=3+2+2\sqrt{6} }\\\\\boxed{\sf{\implies y=5+2\sqrt{6} }}

Hence,

\sf{xy=(5-2\sqrt{6})(5+2\sqrt{6})  }\\\\\sf{\implies xy=(5)^2-(2\sqrt{6} )^2}\\\\\sf{\implies xy=25-24}\\\\\sf{\implies xy=1}

_______________________________________________

Now, find the value of x² and y²

\sf{x^2=(5-2\sqrt{6})^2 }\\\\\sf{\implies x^2=(5)^2+(2\sqrt{6})^2-2\times5\times2\sqrt{6}}\\\\\sf{\implies x^2=25+24-20\sqrt{6} }\\\\\sf{\implies x^2=49-20\sqrt{6} }

____________________☆_______________________________

\sf{y^2=(5+2\sqrt{6})^2 }\\\\\sf{\implies y^2=(5)^2+(2\sqrt{6})^2+2\times5\times2\sqrt{6}}\\\\\sf{\implies x^2=25+24+20\sqrt{6} }\\\\\sf{\implies y^2=49+20\sqrt{6} }

________________________________________________

Now, substitute all the values

\sf{x^2+y^2+xy=49-20\sqrt{6}+49+20\sqrt{6}+1}\\\\\sf{\longrightarrow x^2+y^2+xy=49+49+1}\\\\\boxed{\sf{\longrightarrow x^2+y^2+xy=99}}

Hence,

Value of x² + y² + xy is = 99

Answered by kjjio
1

Step-by-step explanation:

99.................

Similar questions
Math, 1 year ago