Given x(n)=n+1 and N=8, find X(k) using DIF and DIT FFT algorithm.
Answers
Answer:
Output of stage – 1
S1(0)=x(0)+x(4)=1+5=6
S1(1)=x(0)-x(4)=1-5=-4
S1(2)=x(2)+x(6)=3+7=10
S1(3)=x(2)-x(6)=3-7=-4
S1(4)=x(1)+x(5)=2+6=8
S1(5)=x(1)-x(5)=2-6=-4
S1(6)=x(3)+x(7)=4+8=12
S1(7)=x(3)-x(7)=4-8=-4
*Output of stage 2 *
S2(0)=S1(0)+W08S1(2)=6+(1)(10)=16
S2(1)=S1(1)+W28S1(3)=−4+(−j)(−4)=−4+4j
S2(2)=S1(0)−W08S1(2)=6−(1)(10)=−4
S2(3)=S1(1)−W28S1(3)=−4−(−j)(−4)=−4−4j
S2(4)=S1(4)+W08S1(6)=8+(1)(12)=20
S2(5)=S1(5)+W28S1(7)=−4+(−j)(−4)=−4+4j
S2(6)=S1(4)−W08S1(6)=8−(1)(12)=−4
S2(7)=S1(5)−W28S1(7)=−4−(−j)(−4)=−4−4j
Final output
X(0)=S2(0)+W08S2(4)=16+(1)(20)
X(1)=S2(1)+W18S2(5)=−4+4j+(0.707−j0.707)(−4+4j)
X(2)=S2(2)+W28S2(6)=−4+(−j)(−4)
X(3)=S2(3)+W38S2(7)=−4−4j+(−0.707−j0.707)(−4−4j)
X(4)=S2(0)−W68S2(4)=16−(1)(20)
X(5)=S2(1)−W18S2(5)=−4+4j−(0.707−j0.707)(−4+4j)
X(6)=S2(2)−W28S2(6)=−4(−j)(−4)
X(7)=S2(3)−W38S2(7)=−4−4j−(−0.707−j0.707)(−44j)
X(K)=36,−4+9.65j,−4+4j,−4+1.65j,−4,−4−1.65j,−4−4j,−4−9.65j
Hope it correct and help you
Explanation:
Please mark as brainliest ❤️