Math, asked by addict226, 5 months ago

Given(x+y)=13and xy=22, find the value of x^2+y^2.​

Answers

Answered by thapadenish462
1

Answer:

125

Step-by-step explanation:

=(x+y)^2-2xy

=13^2-2×22

=169-44

=125

Answered by nandanaMK
1

 \tt{{(x  + y)}^{2}  =  {x}^{2}  +  {y}^{2}  + 2xy  }\\   \boxed{ \bf{{x}^{2}  +  {y}^{2}  =  {(x  +  y)}^{2}  - 2xy}}

 \large{ \underline{ \tt{Given  : }}}

 \bf{x + y = 13}

 \bf{xy = 22}

 \underline{ \tt{Substituting  : }}

 \tt{ {x}^{2}  +  {y}^{2}  =  {(13)}^{2}  - 2(22)}

 \tt{ {x}^{2}  +  {y}^{2}  = 169 - 44}

 \boxed{ \tt{ {x}^{2}   +  {y}^{2}  = 125}}

 \\  \\ \red{  \bf{Hope \:   \: this \:   \: helps  \: \:  you \: !}}

Similar questions
Math, 10 months ago