Math, asked by CopyThat, 2 months ago

Given X + Y = \left[\begin{array}{ccc}1&2\\1&1\\\end{array}\right] and X - Y = \left[\begin{array}{ccc}3&0\\-1&1\\\end{array}\right]. Find X and Y ?

Answers

Answered by VishnuPriya2801
100

Answer:-

Given:-

 \sf \: X + Y=  \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} \:  \:  \:  -  \: equation \: (1)

And,

 \sf \: X - Y =  \begin{bmatrix} \sf \: 3& \sf \: 0 \\  \sf \:  - 1& \sf \: 1 \end{bmatrix} \:  \:  -  \:  \: equation \: (2)

Add equations (1) & (2)

 \implies \sf \: X + Y + X - Y =   \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} +  \begin{bmatrix} \sf \: 3& \sf \: 0 \\  \sf \:  - 1& \sf \: 1 \end{bmatrix} \\  \\  \\ \implies \sf \:2X =  \begin{bmatrix} \sf \: 1 + 3& \sf \:   2  + 0\\  \sf \: 1 - 1& \sf \: 1 + 1 \end{bmatrix} \\  \\  \\ \implies \sf \:2X = \begin{bmatrix} \sf \: 4& \sf \:   2  \\  \sf \: 0& \sf \: 2\end{bmatrix} \\  \\  \\ \implies \sf \: X =  \begin{bmatrix} \sf \:  \frac{4}{2} & \sf \:    \frac{2}{2}   \\ \\   \sf \:  \frac{0}{2} & \sf \:  \frac{2}{2} \end{bmatrix} \\  \\  \\  \sf \implies  \red{X = \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix}}

Substitute the value of X in equation (1).

 \implies \sf \: \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix} + Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} \\  \\  \\ \implies \sf \:Y = \begin{bmatrix} \sf \: 1& \sf \: 2 \\  \sf \: 1& \sf \: 1 \end{bmatrix} - \begin{bmatrix} \sf \: 2& \sf \:   1  \\  \sf \: 0& \sf \: 1\end{bmatrix} \\  \\  \\ \implies \sf \:Y =\begin{bmatrix} \sf \: 1 - 2& \sf \: 2 - 1 \\  \sf \: 1 - 0& \sf \: 1 - 1 \end{bmatrix} \\  \\  \\ \implies \sf \red{ \:Y =\begin{bmatrix} \sf \: -  1 & \sf \:  1 \\  \sf \: 1 & \sf \: 0 \end{bmatrix}}

Similar questions