Math, asked by evarojy, 5 hours ago

given x²+1/x²=7 and x not equal to 0 find x²-1/x² write the steps also.​

Answers

Answered by hukam0685
2

Step-by-step explanation:

Given:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  = 7 \\  \\

To find:

 {x}^{2}  -  \frac{1}{ {x}^{2} }   \\

Solution:

 {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2 = 7 + 2 \\  \\ or \\  \\  {x}^{2}  +  \frac{1}{ {x}^{2} }  + 2.x. \frac{1}{x}  = 9 \\  \\ ( {x +  \frac{1}{x}) }^{2}  = 9 \\  \\

take square root both sides

x +  \frac{1}{x}=3\\\\\frac{x^2+1}{x}=3\\\\x^2-3x+1=0\\\\

Apply Quadratic formula to find value of x

x_{1,2}=\frac{-b±\sqrt{b^2-4ac}}{2a}\\\\x_{1,2}=\frac{3±\sqrt{9-4}}{2}\\\\x_{1,2}=\frac{3±\sqrt{5}}{2}\\\\x_1=\frac{3+\sqrt{5}}{2}\\\\x_2=\frac{3-\sqrt{5}}{2}\\\\

Put value of x

1) x_1=\frac{3+\sqrt{5}}{2}

{x}^{2}  -  \frac{1}{ {x}^{2} } = \left({\frac{3+\sqrt{5}}{2}}\right)^{2}  -  \frac{1}{ \left({\frac{3+\sqrt{5}}{2}}\right)^{2} }\\\\= \frac{14+6\sqrt{5}}{4}-\frac{4}{14+6\sqrt{5}}\\\\=\frac{7+3\sqrt{5}}{2}-\frac{2}{7+3\sqrt{5}}\\\\=\frac{(7+3\sqrt{5})^2-4}{2(7+3\sqrt{5})}\\\\

=\frac{49+45+42\sqrt{5}-4}{14+6\sqrt{5}}\\\\=\frac{90+42\sqrt{5}}{14+6\sqrt{5}}\\\\=\frac{45+21\sqrt{5}}{7+3\sqrt{5}}\\\\

\bold{\red{ {x}^{2}  -  \frac{1}{ {x}^{2} } =\frac{45+21\sqrt{5}}{7+3\sqrt{5}}}}\\\\

By this way another value of  {x}^{2}  -  \frac{1}{ {x}^{2} }=\frac{45-21\sqrt{5}}{7-3\sqrt{5}}\\\\

by taking another value of x.

Hope it helps you.

Similar questions