Math, asked by Ashi9833, 11 hours ago

Given y=2x2-1, find dydx from first principles.

Answers

Answered by Anonymous
6

Given

y = 2x² - 1

We can write in this way too

f(x) = 2x² - 1

So,

f(x + h) = 2(x + h)² - 1

According to the first principle of derivative

 \sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{f(x + h) - f(x)}{h} \\ \\

  • substitute the value of f(x) and f(x+h)

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{[2(x + h)^{2}   - 1]- [2x^{2} + 1 ]}{h}\\ \\

  • Expand (x + h)² by using identity (a + b)²

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{[2(x^2 + h^2 + 2xh)- 1]- 2x^{2}   + 1 }{h}\\ \\

  • After expanding multiply from 2

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{[2x^2 + 2h^2 + 4xh -  1]- 2x^{2}   + 1 }{h}\\ \\

  • Simplify

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{ \cancel{2x^2}+ 2h^2 + 4xh -   \cancel{1 }  - \cancel{ 2x^{2}}   +  \cancel{1 }}{h}\\ \\

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{ 2h^2 + 4xh}{h}\\ \\

  • Take h as a common and cancel it

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} \dfrac{ \cancel h(2h + 4x)}{ \cancel{h}}\\ \\

  • Put the value of h

\sf \dfrac{dy}{dx} =  \sf \lim_{h \rightarrow 0} (2h + 4x)\\ \\

\sf \dfrac{dy}{dx} =4x

•°• The derivative of f(x) or y is 4x

Similar questions