Math, asked by prathabhagoria, 8 months ago

Good afternoon !!!

Ch - Trigonometry...

Plz make sure that ur answer is 595/3456

Thnks ❤️✌️

Attachments:

Answers

Answered by tennetiraj86
3

Answer:

answer for the given problem is given

Attachments:
Answered by Anonymous
24

Question

If sin theta = 12/13

Find : Sin²theta Cos²theta / 2Sin theta . Cos theta × 1/tan²theta

Solution

Given : sin theta = 12/13

Cosider a right angled triangle

In which Perpendicular= 12 , Hypotenuse = 13 and base =?

Now by using Pythagoras theorem find base

Base² = Hypotenuse ²- Perpendicular ²

Base² = 13² - 12²

 base \:  =  \sqrt{169 - 144}

base =  \sqrt{25}

base = 5

Then Sin theta = p/h

= 12/13,

Cos theta = b/h

= 5/13,

and tan theta = p/b

= 12/5

Now put the value

A/q

 \frac{sin {}^{2}  \:  - cos {}^{2} }{2 sin.cos}  \times  \frac{1}{tan {}^{2} }

  =  > \frac{ (\frac{12  }{13}) {}^{2}  -  (\frac{5  }{13} ) {}^{2}  }{ \frac{2 \times 12}{13}  \times  \frac{5}{13} }  \times  \frac{1}{ (\frac{12  }{5}) {}^{2}  }

 =  >  \frac{ \frac{144}{169} -  \frac{25}{169}  }{ \frac{24}{13} \times  \frac{5}{13}  }  \times  \frac{1}{ \frac{144}{25} }

 =  >  \frac{ \frac{119}{169}  }{\frac{120}{169} }  \times  \frac{25}{144}

 =  > ( \frac{119}{169}  \times  \frac{169}{120})  \times  \frac{25}{144}

 =  >  \frac{119}{120}  \times \frac{25}{144}

 =  >  \frac{119}{24}  \times  \frac{5}{144}

 =  >  \frac{595}{3456}

Therefore, answer is 595/3456

Hope it helps you

FOLLOW ME✔️

Similar questions