Math, asked by Anonymous, 5 months ago

Good Afternoon

milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm find its volume.

Don't spam....xD​

Answers

Answered by itzgeniuspadhaku
5

▶️ QuesTion

milk powder comes in a cylindrical container whose base has a diameter of 14cm and height of 20 cm find its volume.

______________________________________

♦️ AnsWer:

given:

  • height is 20 cm
  • diameter is 14 cm
  • hence radius = ½×14= 7cm

to find:

volume = ?

we know that volume of cylinder = πr²h

= 22/7×7²×20

= 22×7×20

= 3080 cm³

Answered by PD626471
113

\begin{gathered}\frak{Given} \begin{cases} & \sf{Base\:Diameter\:of\: Cylindrical\:container = \bf{14\:cm}} \\ & \sf{Base\:radius\:of\: Cylindrical\:container = \bf{7\:cm}} \\ & \sf{Height\:of\: cylindrical\:container = \bf{20\:cm}} \end{cases}\\ \\\end{gathered}

  • To find: Volume of milk powder in container?

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\underline{\bigstar\:\boldsymbol{According\:to\:the\:question\::}}\\ \\\end{gathered}

  • Volume of Milk powder = Volume of container

⠀⠀⠀

  • ★ Now, Finding Volume of cylindrical container,

⠀⠀⠀

\begin{gathered}\dag\;{\underline{\frak{Volume\:of\:cylinder\:is\:given\:by}}}\\ \\\end{gathered}

\begin{gathered}\star\;{\boxed{\sf{\pink{Volume_{\;(cylinder)} = \pi r^2 h}}}}\\ \\\end{gathered}

where,

  • r & h are radius and height of cylinder respectively.

⠀⠀⠀⠀

\begin{gathered}:\implies\sf Volume_{\;(container)} = \dfrac{22}{7} \times 7 \times 7 \times 20\\ \\\end{gathered}

\begin{gathered}:\implies\sf Volume_{\;(container)} = \dfrac{22}{ \cancel{7}} \times \cancel{7} \times 7 \times 20\\ \\\end{gathered}

\begin{gathered}:\implies\sf Volume_{\;(container)} = 22 \times 7 \times 20\\ \\\end{gathered}

\begin{gathered}:\implies\sf Volume_{\;(container)} = 154 \times 20\\ \\\end{gathered}

\begin{gathered}:\implies{\underline{\boxed{\frak{\purple{Volume_{\;(container)} = 3080\:cm^3}}}}}\;\bigstar\\ \\\end{gathered}

\therefore\:{\underline{\sf{Volume\:of\:milk\:powder\:in\:container\:is\: \bf{3080\:cm^3}.}}}

⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\qquad\boxed{\underline{\underline{\pink{\bigstar \: \bf\:Formula\:Related\:to\:cylinder\:\bigstar}}}}\\ \\\end{gathered}

\sf Area\:of\:base\:of\:cylinder = \bf{\pi r^2}

• \:  \: \sf Total\:Surface\:area\:of\:cylinder = \bf{2 \pi r(r + h)}

• \:  \: \sf Curved\:Surface\:area\:of\:cylinder = \bf{2 \pi rh}</p><p>

• \:  \: \sf Volume\:of\:cone = \bf{ \dfrac{1}{3} \times Volume_{\:(cylinder)}}

Similar questions