good evening ❤
Chapter name : Compound and multiple angles...
__/\__ if ye don't know the answer, thn answer botton pls mat click kijiye __/\__
☺☺
Attachments:
yadav987:
follow me on Instagram
Answers
Answered by
149
Trigonometric and algebraic formulas :
1. cosC - cosD = - 2 sin sin
2. a³ + b³ = (a + b) (a² + b² - ab)
3. cos2A = 2 cos²A - 1
4. cos(A + B) + cos(A - B) = 2 cosA cosB
5. cos(90° - A) = sinA
Proof of the problem :
Now, L.H.S. = 4 (cos³20° + cos³40°)
= 4 (cos20° + cos40°)
(cos²20° + cos²40° - cos20° cos40°)
= 2 (cos20° + cos40°)
(2 cos²20° + 2 cos²40° - 2 cos20° cos40°)
= 2 (cos20° + cos40°)
{(cos40° + 1) + (cos80° + 1) - (cos60° + cos20°)}
= 2 (cos20° + cos40°)
{(cos40° + cos80° - cos20°) + 2 - cos60°}
= 2 (cos20° + cos40°)
{(cos80° - cos20°) + cos40° + 2 - 1/2}
= 2 (cos20° + cos40°)
{- 2 sin(80° + 20°)/2 sin(80° - 20°)/2 + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- 2 sin50° (1/2) + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + cos(90° - 50°) + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + sin50° + 3/2}
= 2 (cos20° + cos40°) * (3/2)
= 3 (cos20° + cos40°)
= R.H.S.
Hence, proved.
1. cosC - cosD = - 2 sin sin
2. a³ + b³ = (a + b) (a² + b² - ab)
3. cos2A = 2 cos²A - 1
4. cos(A + B) + cos(A - B) = 2 cosA cosB
5. cos(90° - A) = sinA
Proof of the problem :
Now, L.H.S. = 4 (cos³20° + cos³40°)
= 4 (cos20° + cos40°)
(cos²20° + cos²40° - cos20° cos40°)
= 2 (cos20° + cos40°)
(2 cos²20° + 2 cos²40° - 2 cos20° cos40°)
= 2 (cos20° + cos40°)
{(cos40° + 1) + (cos80° + 1) - (cos60° + cos20°)}
= 2 (cos20° + cos40°)
{(cos40° + cos80° - cos20°) + 2 - cos60°}
= 2 (cos20° + cos40°)
{(cos80° - cos20°) + cos40° + 2 - 1/2}
= 2 (cos20° + cos40°)
{- 2 sin(80° + 20°)/2 sin(80° - 20°)/2 + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- 2 sin50° (1/2) + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + cos40° + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + cos(90° - 50°) + 3/2}
= 2 (cos20° + cos40°)
{- sin50° + sin50° + 3/2}
= 2 (cos20° + cos40°) * (3/2)
= 3 (cos20° + cos40°)
= R.H.S.
Hence, proved.
Answered by
3
Answer:
Step-by-step explanation:
We know that:-
cos 3x=4 cos^3(x)-3cos(x)
=>
4cos^3(x)=cos 3x+3 cos(x)
Now,angle 60° lies in first quadrant and 120° in second quadrant.So,cos 60° and cos 120° have Same values with opposite signs, hence they get cancelled.
So,we get the Value of RHS.
Similar questions