CBSE BOARD XII, asked by Himans24t, 9 months ago

Good Evening

Find the total surface area area and curved surface area of height 42 cm and cylinder of radius 14 cm.

Please do not spam​

Answers

Answered by Anonymous
4

\large{\red{\bold{\underline{Given:}}}}

 \sf \: Radius \: of \: the \: cylinder = 14cm \\  \\  \sf \: Height \: of \: cylinder = 42cm

\large{\green{\bold{\underline{To \: Find:}}}}

 \sf \: (i) \: Total \: surface \: area \: of \: cylinder \\  \\  \sf \: (ii) \: Curved \: surface \: area \: of \: cylinder

\large{\blue{\bold{\underline{Formula \: Used:}}}}

 \sf \: Total \:  surface \:  area = 2\pi r(r + h) \\  \\  \sf \: Curved  \: surface  \: area = 2\pi rh

\large{\red{\underline\bold{{Solution:}}}}

 \sf \: Let \: the \: radius \: of \: the \: cylinder \: be \: r, \\ \sf \: and \: the \: height \: of \: the \: cylinder \: as \: h

\large{\green{\bold{\underline{Then:}}}}

\sf \: (i) \: Total \:  surface  \: area  = 2\pi r(r + h)  \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7}  \times 7(14 + 42) \\  \\ \rightarrow \: \sf Total \:  surface  \: area = 2 \times  \frac{22}{7} \times 7(56) \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area =  \frac{44}{\cancel7}   \times \cancel14 \times 56  \\  \\ \rightarrow \: \sf \: Total \:  surface  \: area = 4928 \:  {cm}^{2}

\large{\pink{\bold{\underline{Now:}}}}

 \sf \: (ii) \: Curved \:  surface \:  area  = 2\pi rh \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 2 \times  \frac{22}{7}  \times 14 \times 42 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area =  2 \times  \frac{22}{\cancel7}  \times \cancel14 \times 42 \\ \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 44 \times 2 \times 42 \\  \\ \rightarrow \: \sf \: Curved \:  surface \:  area = 3996 \:  {cm}^{2}

\large{\orange{\bold{\underline{Therefore:}}}}

 \sf \: The \: total \: surface \: area \: of \: cylinder \: is \\ \sf \: 4928 {cm}^{2}  \: and \: curved \: surface \: area \: is \: 3996 {cm}^{2}.

Answered by rudradev2529
0

Answer:df

Explanation:f

Similar questions