GOOD EVENING FRIENDS
please solve this question.
Answers
Given :-
• sec θ + tan θ = 2 + √5
To Find :-
• sec θ
Solution :-
⇒ sec θ + tan θ = 2 + √5
Square both sides,
⇒ (sec θ + tan θ)² = (2 + √5)²
⇒ sec² θ + tan² θ + 2 sec θ tan θ = 9 + 4√5
⇒ 2sec² θ + 2 sec θ tan θ = 10 + 4√5
⇒ sec² θ + sec θ tan θ = 5 + 2√5
⇒ sec θ ( tan θ + sec θ ) = 5 + 2√5
⇒ sec θ (2 + √5) = 5 + 2√5
⇒ sec θ = (5 + 2√5) / (2 + √5)
Rationalising the denominator,
⇒ sec θ = { (5 + 2√5)(2 - √5) } / (4 - 5)
⇒ sec θ = ( 10 - 5√5 + 4√5 - 10) / (-1)
⇒ sec θ = -(-√5)
⇒ sec θ = √5
Hence, The value of sec θ is √5
∴ Option (A) is correct.
Some Formulae :-
• 1 + tan² θ = sec² θ [ used in the solution ]
• 1 + cot² θ = cosec² θ
• sin² θ + cos² θ = 1
• 1 + cos θ = 2 cos² θ/2
• 1 - cos θ = 2 sin² θ/2
• sin 2θ = 2sinθcosθ
• cos 2θ
- 2cos² θ - 1
- cos² θ - sin² θ
- 1 - 2sin² θ
Question:-
If sec θ + tan θ = 2 + √5 , then the value of sec θ is : ( 0° ≤ θ ≤ 90° )
To Find:-
sin θ
Solution:-
➭ sec θ + tan θ = 2 + √5
➭ sec θ - tan θ = 1/2 + √5
➭ 1/√5 + 2 ×√5 - 2/√5 - 2
➭ √5 - 2 = √5 - 2
➭ sec θ tan θ = √5 - 2 => 2sec θ =2√5
➭ sec θ = √5 => cos θ = 1/√5
➭ sin²θ = 1 - cos²θ = 1 - ( 1 /√5)² = 1 - 1/5 => 4/5
=>sin θ = 2/√5
☞ Hence verified
∴ The value of sec θ = 4/5
Option C is correct.