Math, asked by BusyPooH, 1 year ago

Good Morining!

What is ∫√x dx ?

plz give answere

dont spam please!!!

Answers

Answered by ᎷíssGℓαмσƦσυs
14

Answer:

good morning dear ❣️❣️

integration √x

integration x^1/2

(x^1/2+1)/1/2+1

2x³/²/3

this is your answer ❣️❣️✌️✌️

Answered by Anonymous
5

Answer:

 \implies  \frac{2}{3} x \sqrt{x}  + c \:  \\ or \:  \\  \implies \:  \frac{2}{3}  {x}^{ (\frac{3}{2} )}  + c

Step-by-step explanation:

Solution

According to the question,

let \: i \:  =  \int \:  \sqrt{x} \:  dx \\  \\  \because \:  \sqrt{y}  =  {y}^{ (\frac{1}{2}) }  \\  \therefore \\  \\ i \:  =  \int \:  {x}^{( \frac{1}{2}) }  \: dx \\

We know that,

 \int \:  {x}^{n} \: dx  =  \frac{ {x}^{n + 1} }{n + 1}   + c \: \\  \\  c \: is \: a \: constant \:

Therefore

i \:  =  \frac{ {x}^{ (\frac{1}{2}  + 1)} }{ \frac{1}{2}  + 1}  + c \\  \\ i \:  =  \frac{ {x}^{( \frac{3}{2}) } }{ \frac{3}{2} }   + c\\  \\ i \:  =  \frac{2}{3}  {x}^{( \frac{3}{2} )}  + c \\  \\ or \:  \\  \\ i \:  =  \frac{2}{3} x \sqrt{x}  + c \\  \\  \because \:  {n}^{ \frac{3}{2} }  =  {n}^{1} \:  {n}^{ \frac{1}{2} }  = n \sqrt{n}  \\  \\

Hope it helps you.

Similar questions